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Abstract
In this paper we present the State of the Art in Secure Multiparty Computation Protocols to Privacy
Preserving Data Mining. Basic definitions on the main topics are presented as some proposed pro-
tocols in the reviewed literature. We also briefly discuss the authors contribution under practical
integration perspective and points some issues on using SMC in PPDM.
Keywords: Secure Multiparty Computation, Privacy-preserving Data Minig, Privacy, Information
Security

Resumo
Neste artigo apresentamos o estado da arte dos protocolos de Secure Multiparty Computation para
mineração de dados com preservação de privacidade.São apresentadas as definições básicas dos
principais tópicos dos protocolos propostos da literatura estudada. Também é apresentada uma
breve discussão sobre a contribuição dos autores sob um perspectiva prática de integração e apon-
tados alguns aspectos a tomar cuidado quando da utilização da SMC em PPDM.
Palavras-chave: Secure Multiparty Computation, Mineração de Dados com Preservação de Privaci-
dade, Privacidade, Segurança de Informação
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1 Introduction

Recent advances in information technology enable more organizations to collect, store, and use

several types of user’s/clients’ information, Tassa and Gudes (2012). Such large repositories of data

carry valuable information that may be extracted through data mining tools. In such settings, protect-

ing the privacy of the user’s/clients’ private data in those repositories is very important. Identifying

attributes such as names and ID numbers use to be removed before releasing the data sets for mining

purposes, but the private information might still leak due to linking attacks. Such attacks may join the

public attributes, also known as quasi-identifiers, from published data with a publicly accessible table

like voters registry, and thus disclose private information of specific individuals.

Several organisations like Business Corporations, Government Departments, Research, profit and

non-profit, attain and analyse data to fulfil their desired goals. The data utilised usually embodies

classified information of private entities. Murugeshwari, Jayakumar, and Sarukesi (2012)

Privacy-preserving data mining, according to Lindell and Pinkas (2009), considers the problem

of running data mining algorithms on private data that is not supposed to be revealed — even to the

party/entity running the algorithm. Considering a distributed set of parties, the data is divided among

two, or more, different parties and run a data mining algorithm on the union of the parties’ databases

without allowing any party to view another individual’s private data.

With Secure Multiparty Computation, from now on SMC, Mishra, Trivedi, and Shukla (2009),

several parties can jointly perform some global computation using their private data without loss of

data security/privacy. SMC provides a base for end-to-end secure multiparty protocol development.

This paper is strutured as follows: Section 2 presents an overview about Privacy Preserving Data

Mining, in Section 3 we show some basic concepts about Secure Multiparty Computation, Section 4

presents some Secure Multiparty Computation techniques and protocols for PPDM, Section 5 bring

some considerations about PPDM and SMC.

2 Privacy Preserving Data Mining

Privacy preserving data mining (PPDM) technique is a research area in data mining where mining

algorithms are analysed for the side effect in data privacy Nivetha.P.R and selvi.K (2013). The objec-

tive of privacy preserving data mining is built algorithms for transforming the original information, in

some way, keeping the private data and private knowledge confidential even after the mining process.

PPDM is defined, Ying-hua, Bing-ru, Dan-yang, and Nan (2011), as using accurate models and
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analysis results without access to the original data. Data privacy preserving technology can be

achieved through data perturbation, secure multiparty computation and restricted queries.

Wang Wang (2010), adds stating that the main objective of PPDM is to develop data mining

methods without increasing the risk of mishandling the data used. These techniques use some form

of modification to the original data to accomplish the privacy preservation. The modified dataset is

achievable for mining and must meet privacy requirements without missing the profit of mining.

Some of these techniques are described below:

2.1 Data Perturbation

Perturbation techniques work hiding part of the original data, and data-miners acts in the disturbed

data, Ying-hua, Bing-ru, Dan-yang, and Nan (2011). The disturbed data keeps the properties the

same as the original, so the knowledge is accurate even in the disturbed data. Common perturbation

technologies are: Add Noise and Random Response.

2.2 Secure Multiparty Computation

Secure Multiparty Computation (SMC) provides a solution that can effectively protect the sensi-

tive data. SMC considers a set of collaborators/parties who wish to mine their data collectively but

does not want to disclose their datasets to each other, Gkoulalas-Divanis and Verykios (2009). In this

way, this distributed PPDM problem can be reduced to the secure computation of a function with

distributed inputs and solved using cryptographic approaches. Each party, Vaidya and Clifton (2004),

knows/possess some of the private data join in a protocol that produces the data mining results, yet

that can be demonstrated not to reveal data to parties that don’t already had them. Thus the process

of data mining does not cause breaches of privacy.

2.3 Restricted Queries

Anonymous data are used in a restricted query Ying-hua, Bing-ru, Dan-yang, and Nan (2011) it

avoids those who can try to reconstruct the original data from a query. Anonymous techniques divide

the properties of the original real data into four categories:

1. Individually Identifier Attribute used to only identify the body (employee number, ID number,

and so on);
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2. Quasi Identifier Attribute is a set of attributes which could identify the body based on back-

ground knowledge (birthday, gender, ZIP-Code);

3. Sensitive attributes that contain sensitive information (basic pay and allowances);

4. Not Sensitive Attribute is attributes that a Data-Miner not interested in.

Anonymous technology differs from the method of adding noise; it publishes sensitive information

selectively ensuring the data cannot mine the identity of the data supplier. Some anonymous tech-

niques:

2.3.1 k-Anonymization

K-Anonymization Tassa and Gudes (2012) generalises or suppresses the values of the public at-

tributes when projected on the subset of public attributes, thus hiding its relationship with the values

of the sensitive attribute. This generalisation, or suppression, occurs in such a way that each of the

released records becomes indistinguishable from at least k-1 other records. As a consequence, each

individual may be linked to sets of records of size at least k in the released anonymized table, whence

privacy is protected to some extent.

2.3.2 l-Diversity

l-Diversity is a method proposed by Machanavajjhala, Kifer, Gehrke, and Venkitasubramaniam

(2007) to solve the problem of background knowledge attack and homogeneity attacks in k-anonymity.

Each data set of size at least k of indistinguishable records must have at least l ”well-represented” dis-

tinct values in the sensitive attribute, Tassa and Gudes (2012). One of the ways how l-diversity is

usually enforced is by demanding that the frequency of each of the private values within each data set

of indistinguishable records does not exceed 1/l.

2.3.3 t-Closeness

To avoid the problem with l-diversity, Li, Li, and Venkatasubramanian (2007) proposed t-Closeness

method based on k-anonymisation and l-diversity method, which integrated the distribution of sensi-

tive attributes. The authors stated that ”an equivalence class is said to have t-closeness if the distance

between the distribution of a sensitive attribute in this class and the distribution of the attribute in the

whole table is no more than a threshold t. A table is said to have t-closeness if all equivalence classes

have t-closeness”.
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2.4 Data Partitioning

Considering, Vaidya and Clifton (2004), different parties trying to perform a PPDM and assuming

that the input to a function is distributed among different sources, though, the privacy of each data

source comes into question. The way the data is distributed also plays an important role in defining

the problem because data can be partitioned into many parts either vertically or horizontally.

Vertical data partitioning implies that although different sites gather information about the same

set of entities, they collect different feature sets. Moreover, in horizontal partitioning, different sites

collect the same set of information but about different entities.

Figure 1: Data Partitioning: (a) Vertical data partitioning and (b) Horizontal data partitioning from
Vaidya and Clifton (2004).

2.5 Distributed Data Methods

Liu, Ying-hua, Bing-ru, Dan-yang, and Nan (2011), states that there are three kinds of methods of

distributed data: association rules, clustering and classification.

2.5.1 Association Rules

Association rule learning in PPDM is a popular and well-researched method for discovering in-

teresting relations between variables in huge databases. It shows attribute value conditions that fre-

quently occur together in given databases.

Revista GEINTEC - ISSN: 2237-0722. Aracaju/SE. Vol. 7, n.4, p.4131-4148, out/nov/dez - 2017
D.O.I.: 10.7198/geintec.v7.i4.1213

4135



2.5.2 Clustering

In Clustering Tassa and Gudes (2012), data is generalised according to accepted generalisation

rules. Practitioners still perceive clustering-based privacy models as sufficient for mitigating risk in

the real world while maximising utility, and real-life applications still utilise them for sanitising data.

2.5.3 Classification

A classification algorithm is used to classify distributed data (i.e. ID3, C4.5, C5,nearest neighbour).Ying-

hua, Bing-ru, Dan-yang, and Nan (2011).

3 Secure Multiparty Computation

The aim of SMC Lindell and Pinkas (2009) is to enable parties to carry out distributed computing

tasks in a secure manner. It is also concerned with the possibility of deliberately malicious behaviour

by some adversarial entity. It is assumed that a protocol execution may come under ”attack” by an

external entity, or even by a subset of the participating parties. From their Lindell and Pinkas (2009)

study, the next subsections describe SMC according to Security Properties and Adversarial Power.

3.1 Security Properties

Some different definitions for SMC have been proposed. These definitions aim to ensure impor-

tant security properties that capture most multiparty computation tasks. Lindell and Pinkas (2009)

describes these properties:

• Privacy: No party should learn anything more than its prescribed output. The only information

that should be learned about other parties’ inputs is what can be derived from the output itself.

• Correctness: Each party is guaranteed that the output that it receives is correct.

• Independence of Inputs: Corrupted parties must choose their inputs independently of the honest

parties’ inputs.

• Guaranteed Output Delivery: Corrupted parties should not be able to prevent honest parties

from receiving their output. The adversary should not be able to disrupt the computation by

carrying out a ”denial of service” attack.
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• Fairness: Corrupted parties should receive their outputs if and only if the honest parties also

receive their outputs

3.2 Adversarial Power

The adversary can control a subset of participating parties in the protocol. It is necessary to

formalise how adversary corruption strategy and what kind of adversary’s behaviour can occur.

3.2.1 Corruption Strategy

1. Static corruption model: The adversary has a fixed set of parties under his control. Honest

parties remain honest, and corrupted parties remain corrupted.

2. Adaptive corruption model: Rather than having a fixed set of corrupted parties, adaptive adver-

saries can corrupt parties during the computation. The choice of who, and when to corrupt, can

be arbitrarily decided by the adversary. Once a party is corrupted, it remains corrupted from

that point on.

3.2.2 Adversary Behavior

1. Semi-honest adversaries: In this model, even corrupted parties correctly follow the protocol

specification. However, the adversary obtains the internal state of all the corrupted parties and

attempts to use this to learn information that should remain private. This kind of adversaries is

also called ”honest-but-curious” and ”passive”.

2. Malicious adversaries: In this adversarial model, the corrupted parties can arbitrarily deviate

from the protocol specification, according to the adversary’s instructions. Malicious adversaries

are also called ”active”.

4 PPDM and Secure Multiparty Computation

A truly secure SMC protocol Vaidya and Clifton (2004) doesn’t reveal any information other than

its input and output or any information polynomially computable from it, but care in performing

these tasks is required, like this, itself might be a privacy breach. This section presents some of the

proposed protocols and algorithms in PPDM and SMC proposed by Lindell and Pinkas (2009), Tassa

and Gudes (2012), Bogdanov, Niitsoo, Toft, and Willemson (2012), and Teo, Lee, and Han (2012).

Notice that, in this section, only three protocols/algorithms are listed.
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4.1 Lindell and Pinkas - Lindell and Pinkas (2009)

In their paper, Lindell and Pinkas (2009) present two protocols that can be used as basic building

blocks for secure protocols:

• Oblivious Transfer, which security rest on the decisional Diffie-Hellman (DDH) assumption;

and

• Oblivious Polynomial Evaluation, based on homomorphic encryption (the authors consider this

protocol secure in the semi-honest model and achieves privacy in the face of a malicious adver-

sary).

4.1.1 Oblivious Transfer

This is the protocol described by Lindell and Pinkas (2009):

• Input:The sender has a pair of strings (m0,m1) and receiver has the bit σ .

• Auxiliary input: The parties have the description of a group G of order n, and a generator g

for the group; the order of the group is known to both parties.

• The Protocol

1. The receiver R chooses a,b,c ∈R {0, ...,n− 1} and computes γ and a generator g for the

group; the order of the group is known for both parties;

(a) if σ = 0 then γ = (ga,gb,gab,gc)

(b) if σ = 1 then γ = (ga,gb,gc,gab)

R send γ to S.

2. Denote the tuple γ received by S by (x,y,z0,z1). Then, S checks that z0 6= z1. If they are

equal, it aborts outputting ⊥. Otherwise, S chooses random u0,u1,v0,v1 ∈R {0, ...,n−1}

and computes the following four values:

w0 = xu0.gv0 k0 = (z0)
u0.yv0

w1 = xu1.gv1 k1 = (z1)
u1.yv1

S then encrypts m0 under k0 and m1 under k1. For the sake of simplicity, assume that

one-time pad is used. That is, assume that m0 and m1 are mapped to elements of G. Then,

S computes c0 = m0.k0 and c1 = m1.k1 where multiplication is in the group G.

S sends R the pairs (w0,c0) and (w1,c1).
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3. R computes kσ = (wσ )
b and outputs mσ = cσ .(kσ )

−1.

4.2 Tassa and Gudes - Tassa and Gudes (2012)

They devised secure distributed protocols for obtaining k-anonymized and l-diverse views of

shared databases. They presented two SMC protocols: the first one is a simple SMC protocol for

the computing the sum of private integers. Moreover, the second SMC protocol computes the Least

Common Ancestor of private nodes in a tree. The LCA proposed protocol is a contribution of the

authors.

4.2.1 Sum of Private Integers

Protocol to secure computation of the sum presented by Tassa and Gudes (2012):

• Input:Player i, 1≤ i≤ m, has an input bit ai ∈ N

• Output: a = ∑
m
i=1 ai.

1. Player 1 sets a = 0.

2. for i = 1, ...,m do

3. Player i generates a random element ri ∈ ZN and sends to Player i+1 (or Player

1 when i = m) the value a = a+ai + ri, where all operations are made in ZN .

4. end for

5. for i = 1, ...,m do

6. Player i sends to Player i+1 (or Player 1 when i = m) the value a = a− ri.

7. end for

8. The value of a at this stage is a = ∑
m
i=1 ai.

Where N is any sufficiently large integer that is agreed among the players in advance.

4.2.2 Secure Computation of AND

This is the protocol to computes securely AND proposed by Tassa and Gudes (2012):

• Input:Player i, 1≤ i≤ m, has an input bit bi ∈ {0,1}

• Output: b = ∏
m
i=1 bi.
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1. Player 1 sets a = 0.

2. for i = 1, ...,m do

3. Player i generates a random element ri ∈ Zm+1 and sends to Player i+ 1 (or

Player 1 when i = m) the value a = a+bi + ri, where all operations are made in

Zm+1.

4. end for

5. for i = 1, ...,m−2 do

6. Player i sends to Player i+1 the value a = a− ri.

7. end for

8. Player m−1 computes u := a− rm−1 = ∑
m
i=1 bi + rm.

9. Player m computes v = m+ rm.

10. Player m−1 and m output b = 1 if u = v, and b = 0 otherwise.

The protocol is based on the fact that the And of all bits equals 1 iff their sum equals m. Hence,

the players execute the secure sum protocol up to one step before its completion (steps 1–8). Then, in

steps 9–10, the last two players check whether the sum equals or not. To do that, they need to securely

compare two values (u and v), without disclosing them.

4.2.3 Sequential clustering for k-anonymization in horizontally partitioned databases

The distributed sequential clustering protocol in the horizontal partitioning setting proposed by

Tassa and Gudes (2012):

• Input:m tables Di = {Ri
1, ...,R

i
ni
}, integer k.

• Output: A k-anonymized table, D = {R1, ...,Rn} of
⋃m

i=1 Di, where ∑
m
i=1 ni.

1. Compute n = ∑
m
i=1 ni.{SMC protocol}

2. Choose a random partition of the data records into t := bn/k0c clusters, C1, ...,Ct .

3. Player 1 computes the size, closure, and generalization cost of all clusters, |Cs|,Cs, and

F(Cs), i≤ s≤ t. {SMC protocol}

4. for i = 1, ...,m do
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5. for j = 1, ...,ni do

6. Let Cs be the cluster to which record Ri
j currently belongs. Compute the

closure and generalization cost of C′s :=Cs\{Ri
j}.{SMC protocol}

7. for r = 1, ..., t,r 6= s do

8. Compute the closure and generalization cost of C′r :=Cr
⋃
{Ri

j}.

9. Compute the change in the overall information loss if Ri
j would

move from Cs to Cr:

∆(i, j):s→r := (|C′s|.F(C′s)+ |C′r|.F(C′s))− (|Cs|.F(Cs)+ |Cr|.F(Cs)).

10. end for

11. Let Cr0 be the cluster for which ∆(i, j):s→r is minimal.

12. if |Cs|= 1 then

13. Move Ri
j from Cs to Cr0 and update the size, closure and general-

ization cost of Cr0 .

14. Remove Cs from the list of clusters.

15. else

16. if ∆(i, j):s→r < 0, move Ri
j from Cs to Cr0 and update the size, closure

and generalization cost of both Cs and Cr0 .

17. end if

18. end for

19. Transfer to the next player the updated sizes and closures of all clusters.

20. end for

21. for each Cs of size |Cs|> k1 do

22. Player 1 creates a new cluster and sends a message to all players to move a

random half of the records in Cs to the new cluster.

23. Player 1 computes the size, closure, and generalization cost of Cs and the new

cluster.{SMC protocol}

24. end for

25. if at least one record was moved during the last loop (Steps 4-20), go to Step 4.
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26. while the number of clusters of size smaller than k is greater than 1 do

27. Compute the distance between every pair of small clusters,

dist(Cs,Cr) := (|Cs
⋃

Cr|.F(Cs
⋃

Cr))− (|Cs|.F(Cs)+ |Cr|.F((Cr)).

28. Unify the two closest small clusters.

29. end while

30. If there exists a single cluster of size less than k, unify it with the cluster to which it is

closest.

31. Compute the k-anonymization that corresponds to the final clustering. {SMC protocol}

The protocol is based on the fact that the And of all bits equals 1 iff their sum equals m. Hence,

the players execute the secure sum protocol up to one step before its completion (steps 1–8). Then, in

steps 9–10, the last two players check whether the sum equals or not. To do that, they need to securely

compare two values (u and v), without disclosing them.

4.3 Bogdanov, Niitsoo, Toft, and Willemson (2012)

They describe new protocols in the Sharemind model for secure multiplication, share conversion,

equality, bit shift, bit extraction, and division.

4.3.1 Resharing Protocol [[u]]← Reshare([[u]])

• Data: Shared value [[u]].

• Result: Shared value [[w]] such that w = u, all shares wi are uniformly distributed and ui and w j

are independent for i, j = 1,2,3.

1. P1 generates random r12← Z2n .

2. P2 generates random r23← Z2n .

3. P3 generates random r31← Z2n .

4. All values ∗i j are sent from Pi to P j.

5. P1 computes w1← u1 + r12− r31.

6. P2 computes w2← u2 + r23− r12.

7. P3 computes w3← u3 + r31− r23.

8. Return [[w]].
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4.3.2 Multiply Two Shared Values Protocol [[w′]]←Mult([[u]], [[v]])

• Data: Shared values [[u]] and [[v]].

• Result: Shared value [[w′]] such that w′ = uv.

1. P1 sends u′1 and v′1 to P2.

2. P2 sends u′2 and v′2 to P3.

3. P3 sends u′3 and v′3 to P1.

4. P1 computes w1← u′1v′1 +u′1v′3 +u′3v′1.

5. P2 computes w2← u′2v′2 +u′2v′1 +u′1v′2.

6. P3 computes w3← u′3v′3 +u′3v′2 +u′2v′3.

7. Return [[w′]]← Reshare([[w]]).

They also present bit level protocols.

4.3.3 [[p]]← Pre f ixOR([[p]]

• Data: Bitwise shared vector [[p]].

• Result: The vector [[p′]] which has the form 00...011...1, where the initial part 00...01 coincides

with the vector originally represented by [[p]].

1. l← |[[p]]|.

2. if l = 1 then

3. Return [[p′]]← [[p]]

4. else

5. [[p′]]
(l−1,...bl/2c)← Pre f ixOR([[p]]

(l−1,...bl/2c)
).

6. [[p′]]
(bl/2c−1...0)← Pre f ixOR([[p]]

(bl/2c−1...0)
).

7. for i← 0 to bl/2c−1 do

8. [[p′]]
(i)← [[p′]]

(i)∨ [[p′]](bl/2c)
.

9. Return [[p′]].

10. end.
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4.4 Teo, Lee and Han Teo, Lee, and Han (2012)

The authors present four protocols targeted at semi-honest parties.

4.4.1 Secure Scalar Product Protocol

• Input: Alice has input vector x = [x1,x2, ...,xn]
T and Bob has input vector y = [y1,y2, ...,yn]

T .

• Output: Alice and Bob get an output ra,rb, respectively, such that ra + rb = x.y .

1. Alice generates a private and public key pair (sk, pk)

2. Alice send pk to Bob

3. for i = 1 to n do

4. Alice send Bob, ci = Epk(xi)

5. end for

6. Bob computes w = ∏
n
i=i cyi

i

7. Bob generates a random plaintext rb

8. Bob sends to Alice, w′ = w.Epk(−rb)

9. Alice computes ra = Dsk(w′) = x.y− rb

4.4.2 Secure Matrix Multiplication Protocol

• Input: Alice has private d x N matrix A and Bob has private N x n matrix B.

• Output: Alice obtains private matrix Ma and Bob obtains private matrix Mb such that their sum

Ma +Mb = AB yields the product matrix.

1. for i = 1 to d do

2. for j = 1 to n do

3. Alice and Bob securely compute the scalar product of vector a(i, :), and

vector b(:, j). At the end, Alice and Bob each hold a private value of Ma

and Mb respectively.

4. end for

5. end for
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4.4.3 Secure Inverse of Matrix Sum Protocol

• Input: Alice has private m x m matrix A and Bob has private m x m matrix B.

• Output: Alice obtains private matrix MA and Bob obtains private matrix MB such that their

sum MA +MB = (A+B)−1 yields the inverse of the sum of their matrices.

1. Bob randomly generates a non singular m x m matrix P

2. Alice and Bob jointly perform Fast Secure Matrix Multiplication to compute AP, at the

end of which, Alice and Bob each obtains SA,SB respectively such that SA +SB = AP.

3. Bob computes SB +BP and sends it to Alice.

4. Alice computes SA +SB +BP (ie,(A+B)P), and then its inverse P−1(A+B)−1.

5. Bob and Alice jointly perform Fast Secure Matrix Multiplication on P and P−1(A+B)−1,

at the end of which, Alice and Bob each hold private portions MA and MB respectively

such that

MA +MB = P(P−1(A+B)−1) = (A+B)−1

4.4.4 Fast Secure Matrix Multiplication Protocol

• Input: Alice has private d x N matrix A and Bob has private N x n matrix B.

• Output: Alice obtains private matrix Ma and Bob obtains private matrix Mb such that their sum

Ma +Mb = A+B yields the the product matrix.

1. Alice encrypts his/her matrix E(A) and send it to Bob.

2. for i = 1 to d do

3. for j = 1 to n do

4. Bob individual computes ∏
N
k=1[E(a(i,k))]

b(k, j)xE(−rB
i, j), where −rB

i, j is

a random number and sends all E(rB
i, j)(mxn) back.

5. Alice decrypts and obtain rA

6. Alice and Bob each hold a private value of Ma and Mb.

7. end for

8. end for
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5 Final Considerations

The work of Lindell and Pinkas (2009) presents a very detailed description and validation of pro-

tocols. Despite describing the protocol, they do not present how to use it in PPDM effectively. They

also introduced the use of SMC for data mining by constructing a privacy-preserving ID3 classifica-

tion algorithm

In their paper, Tassa and Gudes (2012) present two SMC protocols for PPDM. They also show how

to integrate the SMC (4.2.3)protocol to make a sequential clustering for k-anonymisation in horizon-

tally partitioned databases. The resulting approach applies to both horizontal and vertical partitioning

scheme, the only cryptographic primitives needed in their approach are an SMC protocol for comput-

ing sums and a secure hash function. The presented/proposed protocols are not perfectly secure in the

cryptographic sense, as pointed by the authors, they ”leak very little and benign information”.

Bogdanov, Niitsoo, Toft, and Willemson (2012) present several SMC protocols, but as Lindell and

Pinkas (2009), do not show a practical way to integrate their protocols with PPDM.

Teo, Lee, and Han (2012), present four SMC protocols, but like Bogdanov, Niitsoo, Toft, and

Willemson (2012) and Lindell and Pinkas (2009), no practical way to integrate their protocols with

PPDM is showed.

Vaidya and Clifton (2004) states that the advantage of a SMC-based solution is that it gives a

better notion of exactly what is revealed. In a perfect SMC protocol, nothing should be revealed, but

in the real world, this is not feasible. However, the SMC theory provides ways to delineate what is

known and what remains secret. The drawback on using SMC protocols is inefficiency. Generic SMC

protocols are impractical when considering large inputs, and this is typical in data mining.

In Teo, Lee, and Han (2012), the authors conclude their work stating that the Secure Multiparty

Computation protocols are not very highly efficient yet in a real world. They posit that the malicious

model is more likely similar to a real world in PPDM. In a current definition of security, this model

strongly guarantees to minimise the loss of information opposed to any strong adversaries. They also

believe that to allow some information leakage to build an efficient and secure protocol is acceptable.

As we can observe in related presented papers, Secure Multiparty Computation for Privacy Pre-

serving Data Mining is a growing area. Some gaps must be filled to take the real benefits of this

technologies. Several proposals were shown, but just one, Tassa and Gudes (2012), of them presents

how to integrate SMC and PPDM more practically. As shown in presented papers, when using SMC in

PPDM one must consider the communication overhead (time) introduced by SMC protocols. Despite
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this issues, the combination of SMC and PPDM could be an effective solution to privacy concerns in

today’s Data Mining reality.
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