

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

2998

An Indigenous Solution for SYN Flooding

Muhammad Junaid1; Fahad Ali Khan2; Ali Imran Jehangiri3; Yousaf Saeed4; Mehmood Ahmed5;

Luqman Shah6; Muhammad Naeem7

1Department of IT, The University of Haripur, Pakistan.
1mjunaid@uoh.edu.pk

2Department of IT, The University of Haripur, Pakistan.
3Department of IT, Hazara University, Mansehra, Pakistan.

4Department of IT, The University of Haripur, Pakistan.
5Department of IT, The University of Haripur, Pakistan.
6Department of IT, The University of Haripur, Pakistan.

 7Department of IT, Abbottabad University of Sciences and Technology, Abbottabad, Pakistan.

Abstract

SYN flooding is one of the most challenging problems that many networks applications face,

particularly those that are security-related. Disrupting a server's daily function and assigning it to

other tasks leaves it a constantly busy server that processes little usable data. In this research, a

comprehensive INDIGSOL approach is demonstrated that not only detects SYN flooding but also

prevents the attacker(s) from making such attempts in the future. The designed approach has four

modules such as node registration and validation, packet capturing, dynamic check system, and hook

activation. The approach is further checked and compared with some state-of-the-art baselines on

various parameters like detection time, response/processing time, and number of malicious packets

detection. It is observed that INDIGSOL performed better than other baselines with an average

accuracy of 99% malicious packet detection in six scenarios along with 13.4% faster detection time

and 11.2% faster response/processing time. Overall, the provided solution is scalable, robust, and

highly accurate that prevents SYN flooding in a timely manner.

Keywords: Network, SYN Flooding, Protocol, Performance.

1. Introduction

TCP is a stable, connection-oriented transport protocol. The TCP's job is to keep the network's

intricacies hidden from the upper layers. Until data can be shared, the two hosts involved in a

conversation must first create a link, according to the connection-based protocol. The three-way

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

2999

handshake is used in TCP to do this. Data sequencing and acknowledgment are the only two issues

that we are dealing about when it comes to reliability [1]. Per byte in every segment is assigned a

sequence number, and TCP accepts all data bytes obtained from other end. ACKs ingest a series

number but are not accepted themselves, which is absurd [1]-[3]. TCP requires hosts to create a link

in order to share data. The 3-way handshake is a three-step mechanism used by TCP to create a bond.

The method is seen in Fig.1 in which machine A is running a client program and it wants to bind to a

server program on machine B. At (1), the client requests a connection from the server. This is the sole

objective of the SYN flag. The client informs the server that the sequence number field is correct and

should be double-checked. The client can use its ISN (Initial Sequence Number) to configure the

sequence number field in the TCP header. The server will answer with its own ISN (thus the SYN

flag is set) and an acknowledgement of the client's first segment (which is the client's ISN+1) after

receiving this segment (2).

Figure 1 - TCP Three-way Handshake

After that, the client acknowledges the server's ISN (3) and now data transmission is possible

[4]. There are situations in which a packet is sent from client to the server and before taking

acknowledgement, the connection is broken making it half open TCP connection. This connection

remains in the buffer until proper acknowledgement is received. However, in SYN flooding, the

attacker/attacking host intentionally not complete the TCP connection and tries to make more and

more TCP half open connections. The time comes when servers' backlog gets many numbers of such

incomplete connections that makes it busy and unavailable for legitimate users for connection. This

situation is called SYN flooding and has been studied by number of researchers with variety of

solutions [5]-[7].

An intruder uses a DoS attack to open a huge number of half-open TCP/IP (Transmission

Control Protocol/Internet Protocol) connections by intentionally breaking the three-way handshake

[8]. It is similar to many DoS attacks in that it does not exploit a program error, but rather a flaw in

the protocol's implementation. Most SMTP agents are unwise and will welcome whatever is sent their

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3000

way, so mail-bombing DoS attacks succeed. The ICMP ECHO command takes advantage of the fact

that most kernels can actually respond to ICMP ECHO request packets one by one. Because of the

current implementation of TCP's link establishment protocol, the flooding TCP SYN DoS attack's

function prevails [9]. A flooding attack is initiated by sending a huge number of packets to the victim

in order to overwhelm one or more of the victim's resources and reduce network capacity, often to the

extent that the networks can no longer be used [10]. The so-called attacks are usually DDoS attacks

that employ amplifiers to boost their strength. Flooding attacks come in a variety of forms, each

based on a particular protocol:

• TCP/IP protocols: ICMP, UDP, TCP, IP

• Application protocols: HTTP, FTP, DNS

However, these attacks can be carried out using a variety of protocols; the most common are

those that use ICMP and UDP packets, which do not require the setting up of a connection between

the communicating entities. The primary aim of these attacks is to consume the victim's bandwidth

before causing any of the victim's systems to go down. The victim may be a single host or a whole IP

network, which is critical. To detect this type of attack, metrics parameters such as throughput,

number of packets, and number of bytes are used [11]. The proposed solution named as INDIGSOL

(Indigenous Solution) is designed and implemented to prevent the SYN flooding in real environment.

This solution has four modules namely:

1. Node registration and validation

2. Packet capturing

3. Dynamic checksum

4. Hook activator

INDIGSOL has the capability to both detect and prevent SYN flooding in a dynamic

environment as the system has been thoroughly tested with number of scenarios. In this solution,

every node needs to get register in the database. The provided defense system keeps a check on the

network nodes dynamically and looks for live clients after fix intervals of time. Now once the

network is on its routine work it will keep a check on all the incoming traffic towards that specific

Server and thus will always be alert for any sort of anomaly. The packet is initially monitored to see

whether it is arriving from the legitimate node or not, in case of legitimate it is forwarded whereas

illegitimate packet is discarded and informed to the user. Secondly, it also checks for number of SYN

from every user and if goes beyond limit, it will start discarding the packets. Overall, INDIGSOL

provides very comprehensive and efficient solution in preventing the SYN attack as compared to

number of state of art baselines.

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3001

SYN Flooding has a serious and long-term effects on the operating systems, since it takes

advantage of the TCP/IP protocol by opening a huge number of half-open connection sockets [12]-

[13]. Each and every device that is linked to the Internet has the possible vulnerability of the SYN

attack based on TCP-based network services. In comparison to the threats on the specific

servers, these attacks may also be directed at individual hosts. If these hosts are on the routers or

other network server, other TCP services should be enabled. The attack significance may be

overstated. Depending on the method, the attack can differ; however, the attack itself is the same. The

TCP protocol is being used by all applications is fundamental [14]. Following are the main

contributions of this research:

• To identify the potential vulnerable host/hosts facing SYN flooding.

• To implement a strong monitoring system that would prevent host/hosts/devices in getting

attacked by the SYN attack.

• To keep track of the illegitimate traffic so that prevention mechanism be assured in future

communication.

The rest of the research is organized as section two provides literature review, methodology is

in section three, section four details about results and discussions and lastly conclusions are in section

five.

2. Literature Review

This section is providing brief overview of different TCP header components, properties and

state of the art techniques used to prevent SYN flooding. Tab. 1 shows various acronyms used in this

research as below:

Table 1 - Acronyms used in the Research and their Meaning

Acronym Meaning Acronym Meaning

SYN Synchronize TCP Transmission Control Protocol

IP Internet Protocol ISN Initial Sequence Number

DoS Denial of Service SMTP Simple Mail Transfer Protocol

ICMP Internet Control Message Protocol UDP Universal Datagram Protocol

HTTP Hypertext Transfer Protocol FTP File Transfer Protocol

DNS Domain Name System SSN Synchronize Sequence Numbers

RCVD Received ACK Acknowledgement

RST Reset URG Urgent

FIN Finish Sock Socket

BSD Berkeley Software Distribution 3WHS Three Way Hand Shake

ARP Address Resolution Protocol DLL Dynamic Link Layer

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3002

2.1. TCP Control Flags

There are six TCP control flags in TCP header. However, SYN flooding exploits only three

them. Details of the flags are as follows:

1. Synchronize Sequence Numbers (SSN): The field synchronize sequence numbers is right.

The 3-way handshake [15] is the only time this flag is accurate. It instructs the receiving

TCP to examine the sequence number field and record the value as the connection (typically

initiator's the client's) initial sequence number. TCP sequence numbers are nothing more

than 32-bit counters. They range between 0 and 4,294,967,295. Per byte of data (along with

some flags) sent over a TCP link is sequenced. The sequence number of the first byte of data

in the TCP section will be stored in the sequence number field in the TCP header.

2. Acknowledgement (ACK): The field for the acknowledgment number is right. Almost

always, this flag is raised. The acknowledgment number field in the TCP header stores the

value of the next predicted sequence number (from the other side), as well as acknowledging

all data up to this ACK number minus one.

3. Reset (RST): It is used to destroy the referenced connection and hence all memory structures

are torn down.

4. Urgent (URG): The urgent pointer is valid. This is TCP's way of implementing out of band

(OOB) data. For instance, in a telnet connection a `ctrl-c` on the client side is considered

urgent and will cause this flag to be set.

5. Push (PUSH): The receiving TCP should not queue this data, but rather pass it to the

application as soon as possible. This flag should always be set in interactive connections,

such as telnet and rlogin.

6. Finish (FIN) The sending TCP is finished transmitting data but is still open to accepting

data.

2.2. Ports

TCP offers a user interface called a port to grant simultaneous access to the TCP module. The

kernel uses ports to distinguish network operations. They only exist at the transport layer. A TCP port

serves as an endpoint for network communications when combined with an IP address. In reality, all

Internet connections are defined by four numbers at any given time: the source IP address and source

port, as well as the destination IP address and destination port. Servers are connected to 'well-known'

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3003

ports so that they can be seen on any device with a common port. TCP port 23 is used for the telnet

daemon.

2.3. TCP Memory Structures and the Backlog

It's important to look at the memory structures that TCP produces when a client SYN arrives

and the link is pending (that is, when TCP is in the SYN SENT or SYN RVCD state and TCP is in

the SYN SENT or SYN RVCD state and TCP is in the SYN SENT or SYN RVCD state and TCP is

in the SYN SENT or SYN [16]. There are three memory structures reserved for every pending TCP

link under BSD type network code (we do not mention the method (proc) structure and file structure)

[17]-[18].

1. Socket Structure (socket ()): Holds data about the communications link's local end, including

the protocol that is used, information about the state, information about addressing, reference

queues, buffers detail, and flags information.

2. Structure of the Internet Protocol Control Block (inpcb ()): TCP (and UDP) use PCBs at the

transport layer to store different pieces of information required by TCP. They store TCP

state, information about IP address, port numbers information, IP header prototype along

with options, and a pointer to the destination address's routing table entry. When a TCP-

based service calls listen () then PCBs are generated for that server.

3. TCP Control Block Structure (tcpcb ()): The TCP control block holds information unique to

TCP, such as timer's information, details about sequence numbers, flow control status

information, and details of OOB data. To store network records, Linux employs a separate

memory allocation scheme. Instead of the pcb() and tcpcb() functions, the socket structure is

included.

4. Sock Structure (sock()): It includes protocol specific information because most of the data

structures are using TCP.

5. SK Structure (sk_buff()): It contains protocol specific information comprising of packet

header information and a sock().

2.4. Backlog Queue

There are a lot of memory structures here. They must be allocated any time a client SYN

arrives on a legitimate port (a port where a TCP server is listening ()). A busy host could quickly

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3004

waste all of its memory just attempting to process TCP connections if there was no cap. (This will be

an even more straightforward DoS attack) [19]. There is, however, a restriction to the number of

concurrent link requests a given TCP may have for a given socket. This cap is known as the backlog,

and it refers to the length of the queue where incoming (but unfinished) connections are stored. This

queue cap extends to both the number of missing connections (the 3-way handshake hasn't been

completed) and the number of completed connections that the application hasn't taken from the queue

through the approve () call. If this backlog cap is exceeded, TCP will quietly reject all incoming link

requests before the pending connections are resolved [20]. The backlog is not a significant amount of

work. TCP is normally very quick when it comes to establishing connections. If a link arrives before

the queue is complete, the receiving TCP would more likely have space in its queue when the client

retransmits the connection request section. The queue sizes of various TCP implementations vary.

There is also a 3/2 'grace' margin in BSD style networking code. TCP can support up to backlog3/2+1

connection and if it calls listen with a backlog of 0, this will cause a socket to make one link [21].

There are few common backlog values as mentioned in the following Tab.2:

Table 2 - Common Backlog Values

Operating Systems used Backlog values SBL + Graece Notes

Sun OS 4.x.x 5 8

IRIX 5.2 5 8

Linux 1.2.x 10 10

Win NTs 3.5.1 6 6

Win NTw 4.0 6 6

It's necessary to watch as the receiving TCP processes an incoming section to see just how the

attack operates. For BSD-style networking, the following is valid, and only processes applicable to

this paper are discussed [22]. When a packet arrives, it is demultiplexed and sent up the protocol

stack to TCP, which is in the LISTEN state.

1. Get header information: The TCP and IP headers are retrieved and stored in memory by

TCP.

2. Verify the TCP checksum: The section is verified using the regular Internet checksum. If it

fails, there is no ACK received, and the section is dropped, with the assumption that the

client can retransmit it. The PCB feature associated with the relation is located by TCP. TCP

drops the section and sends a RST if it is not identified. (As an aside, TCP manages

connections that come on ports where the server isn't listening ().) The server has not called

connect () or listen () if the PCB () persists, but the state is CLOSED (). About the fact that

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3005

the section is dropped, no RST is submitted. It is expected that the client resends its link

order [23].

3. Create new socket: A slave socket is generated when a section arrives for a listening ()ing

socket. A socket (), tcpcb(), and another pcb() are all generated here. TCP is not yet

dedicated to the link, but if an error occurs, a flag is set to allow TCP to drop the socket (and

break the memory structures). TCP finds beyond the backlog cap to be a mistake, and the

relation is rejected. This is precisely why the attack succeeds, as we can see. Otherwise, the

TCP status of the new socket is set to LISTEN, and the passive open is attempted. If the

section includes a RST, an ACK, or no SYN, it is dropped. If it includes an ACK, it is

discarded, a RST is submitted, and the memory constructs are destroyed (the ACK is called

a mistake at this stage because it makes no sense for the connection). The section is dropped

if it does not have the SYN bit set. Processing occurs if the section includes a SYN [24].

4. Address processing: TCP then saves the client's addresses in a buffer, connects to the client

with pcb(), processes all TCP options, and sets the initial send sequence (ISS) number, ACK

and the SYN [25]. The client receives a SYN, ISS, and ACK from TCP. At this stage, the

link institution timer is set to 75 seconds. SYN RCVD is the new condition. Now at this time

the socket has been committed to TCP. Since the intended client response is never sent, we

can see that this is the condition in which the target TCP will be when under attack. The

situation remained SYN RCVD until the link establishment timer ends, at which point all

connection-related memory structures are lost and the socket returns to the LISTEN state

[26].

To go along with the ever-present network security threat of SYN flood, the Microsoft has

devised its own approach, such as avoiding RAW sockets, it is not believed that this is the best

solution [27]. Anyone from everywhere, regardless of privileges or access rights, will make YAHOO

Out of Bounds to all of us in the vast dark world of the Internet. Imagine that the PING command is

regarded by all of us as a fast search of operation, but no one is aware of the havoc it causes on the

receipting end. TCP SYN Flood is the same concept; it was and continues to be a source of concern

for most network tycoons.

An attacker first attempts to create a link with the server, after which he attempts to send any

bogus TCP packets to the server in such a manner that all of these packets request the creation of a

connection with that server. However, any clever server will never allow a client to request more than

a certain number of connections, necessitating the attacker's implementation of the spoofing principle,

and therefore someone spoofs itself any time he requests a connection, thus filling up the server's

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3006

Back log and rendering him an all-time busy server [28]. The underlying premise behind this issue is

that it has to be dealt with on a local basis, and as the network grows and widens, it will become more

difficult to deal with it at a higher level [29]. If we establish a monitoring scheme that verifies the

validity of all outgoing traffic by inspecting all outgoing packets in suspicious mode and inquiring the

sender about packets' authenticity and origin.

Table 3 - State of the Art SYN Flooding Techniques

Proposed By Year Technique Pros Cons

Shin

et al [30]
2013

AVANT-GUARD

(Connection

migration

mechanism)

Detection

and prevention of SYN

flood

Delay in establishing new

connections

Buffer saturation

Ambrosin

et al [31]
2015

Line Switch

(SYN proxy

technique)

Removes

buffer saturation

Reduces memory size for

storing the connections

Chin

et al [32]
2015

Collaborative

technique (Monitors

and Correlators)

Mitigates DDOS attacks

Detects only Spoofed

packets

Connecting monitor to every

switch makes it costly

Fichera

et al [33]
2015 OPERETTA Suitable for general traffic Delay in benign TCP connection

Mohammadi

et al [34]
2017 SLICOTS

Low overhead

Less response time
Costly in implementing rules

Dhawan

et al [35]
2015 SPHINX

Detecting rate of packets in

general traffic

Efficient in detection

Static solution generates False

alarm

Does not differentiate between

legitimate and illegitimate

packets

Evmorfos

et al [36]
2020

Neural Network

Architecture

(Deep learning

predictive model)

High accuracy and low

false positive in attack

detection

False negatives are excluded

Less scalability

Putu

et al [37]
2020 SPI using CSF

Minimum SYN violations

are observed and server is

safer

Scalability problem

Cheng

et al [38]
2018

ADADM

(M-SMKL+S-SMKL)

Early DDoS attack

detection

Accuracy in detection

Slow convergence speed

Lack of multidimensions

Jin

et al [39]
2018 SVM Low false alarm rate

Low accuracy in ICMP attack

detection

Gautam

et al [40]
2020

Proposed method

(SVM)
Detection of DDoS attack

Very low attack detection

accuracy

Less parameters

Duwairi

et al [41]
2020 ISDSDN

Efficient and lightweight

Less processing load
Low accuracy

Nugraha

et al [42]
2014 sFlows

Periodic detection of SYN

attack improves efficiency

Less scalable

Complexity

Kumar

et al [43]
2018 SAFETY

Less processing delay

More efficient in early

detection

Single victim destination node

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3007

3. Research Methodology

3.1. Problem Description

The TCP SYN Flood always remains a matter of great concern in the Internet world.

Generally speaking, there has never been provided a full-fledged and multidimensional solution to

this problem. Most of the solutions available deal specific issues or aspects of the flooding process.

So there always remains a dire need for a comprehensive and compact solution to TCP SYN Flood

[44]. It's important to look at the memory structures that TCP produces when a client SYN arrives

and the link is pending (that is, when TCP is in the SYN SENT or SYN RVCD state and TCP is in

the SYN SENT or SYN RVCD state and TCP is in the SYN SENT or SYN RVCD state and TCP is

in the SYN SENT or SYN_ Wide memory systems such as backlog queues [45]. They must be

allocated any time a client SYN arrives on a legitimate port (a port where a TCP server is listening ().

There is, however, a restriction to the number of concurrent link requests a given TCP may have for a

given socket. This queue cap extends to both the number of missing connections (the 3-way

handshake hasn't been completed) and the number of completed connections that the application

hasn't taken from the queue through the approve () call. When this backlog cap is reached, TCP will

quietly reject all incoming link requests before the pending connections are resolved. The backlog is

not a significant amount of work. It does not have to be that way [46].

The attack's signature is straightforward. A SYN flood occurs when a significant number of

SYN packets arrive on a network without the corresponding reply packets which means flooding has

occurred. The perpetrator will use IP to conceal his identity. the act of spoofing When an intruder

inserts a bogus IP address, this is known as IP spoofing. source address, implying that everyone

believes the packet originated from somewhere else than the original sender. In this situation, the

attacker sends a TCP/IP packet to the victim's computer with the following information: the root

address was spoofing to a computer that was not online at the time on the internet. The SYN bit is set

since this is the first packet in a new link. The packet is received by the victim's server, which then

sends a packet back with the SYN and ACK bits collection. The victim's computer sits and waits for a

response at this stage, but it never gets one because the spoofed IP address of the machine that started

the link isn't online. The attacker repeats this procedure until the buffer is full [47]. A TCP

communication begins when a client sends a message to a server that includes the SYN flag in the

TCP header. Normally, the server would send a SYN/ACK to the client specified by the IP header's

32-bit source address. The client would then submit an acknowledgement to the server, allowing data

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3008

transmission to begin. The intended TCP, however, cannot complete the 3-way handshake when the

client IP address is spoofed to be that of an unreachable host and will continue trying until it clocks

out. That is the attack's foundation. The attacking host sends a few SYN requests to the target TCP

port (we found that as few as six are sufficient) (for example, the telnet daemon). The attacking host

must also spoof the source IP address to that of another, currently unreachable host (the target TCP

would send its response to this address). TCP will be notified that the host is unreachable by IP (via

ICMP), but TCP finds these errors to be temporary and leaves the resolution to IP (reroute the

packets, etc.) essentially ignoring them [48]. Since the intruder would not allow *any* host to receive

the SYN/ACKs that would be coming from the target TCP, which will evoke a RST from that host,

the IP-address must be unreachable. The threat will be thwarted. The steps are as follows:

Figure 2 - Targeted Port is being Flooded

The invading host sends a slew of SYN requests at (1). to the aim of filling the target's

backlog queue with pending requests interconnections (2) The goal reacts to what you say with

SYN/ACKs. It thinks it knows where the SYNs are coming from. At this time, any subsequent

requests to this TCP port will be rejected at this time. The targeted port has been overwhelmed [49].

The attack's signature is fairly straightforward [50]. A SYN flood attack occurs when a significant

number of SYN packets arrive on a network without the corresponding reply packets. The intruder

may use IP spoofing to conceal his identity. IP spoofing is where an attacker inserts a false source

address into a packet such that the recipient believes it originated from somewhere other than the

actual sender. The attacker sends a TCP/IP packet to the victim's computer with the source address

spoofed to a machine that is not actually connected to the network. The SYN bit is set [51] since this

is the first packet in a new link. The packet is received by the victim's server, which then sends a

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3009

packet back with the SYN and ACK bits collection. The victim's computer sits and waits for a

response at this stage, but it never gets one because the spoofed IP address of the machine that started

the link isn't online. The attacker repeats this step until the buffer is fully full [52]-[53].

Figure 3 - Normal LAN Scenario

We can observe from the fig. 3 that how a normal LAN setup goes. In this case all the normal

or more specifically the legal clients go through three-way handshake Process. As long as they

haven't completed the three-way handshake (3WHS) so their entry will remain in the TCP incomplete

buffer queue [54]. After completing 3WHS process completes so the entry is moved up to Full

connection queue or Open buffer. In this case we can see that as all the three legal clients have

completed their 3WHS process so their entry is made up in the full open queue. And they can

continue their routine business with the server. In fact, the server contains a list of all the legal clients

with itself and we can see the details of each and every client through C:\ > arp –a (IP Address).

Below is shown an ARP request generated for IP address 192.168.1.2:

Figure 4 - Execution of an ARP

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3010

In fact, we can found out whether a client is alive or dead by sending an ICMP echo request.

Below are details provided by an ICMP echo request:

Figure 5 - Ping Request Output

While talking of a TCP SYN flood, we can look at the following scenario which is totally

opposite to the previous scenario [55]. Here what happens that a hacker who intends to make a DoS

attack uses the IP address of a legal or trusted client and start the TCP SYN flood by sending multiple

(more than 1000) SYN requests to the server while changing his IP address and port by doing IP

Spoofing and Port Spoofing. Thus, the server cannot find whether the connection requests are

genuine or fake and thus responds to each request by a SYN/ACK statement (as considering it a

normal 3WHS), at the same time it makes entry of all these requests in the half open connection

queue. Figure 6 depicts the situation more clearly.

Figure 6 - SYN Flooding Scenarios

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3011

Once the flood is on its way we can see the merciful condition of the server by executing

netstat command like this. C: \ > netstat –a –p tcp

Figure 7 - Output of a Netstat after Successful Flooding Attack

3.2. The Solution

The provided defense system keeps a check on the network nodes dynamically and looks for

live clients after fix intervals of time. Now once the network is on its routine work it will keep a

check on all the incoming traffic towards that specific Server and thus will always be alert for any

sort of anomaly. Basically, the sole purpose of this system will be to look for the SYN packets. Once

a SYN packet arrives at the server so before it ids handed over to the destined application it is

analyzed whether is coming from the valid node or not. If it is from a valid node so it is forwarded to

the desired application without any delay, otherwise it is immediately discarded and the user is

informed that it has discarded an illegal packet which was most probably destined to look for a valid

server and then impose an attack [56].

Figure 8 - LAN Guarded by our Defense System

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3012

The second way or policy which it implements is that if suppose the packet is coming from a

legal client so it is let to go but it then checks for number of SYN packets coming from that specific

application per time and thus if the ratio goes above a fixed limit so it is considered as a suspicious

act and the system gets more tight. Now if even a single SYN packet above the specific number is

received so the client is immediately paralyzed by its extreme defense system and he is unable to send

even a single SYN packet [57]. At the same time the user is informed that it has stopped that specific

client from doing so and has made him an illegal or suspicious user.

Figure 9 - Defense System Detecting Flooder

The basic purpose of this defense system is only to provide an effective and in time solution to

TCP SYN Flood attack. Thus, we worked out on different modules independently in order to make it

one of the most efficient and up-to-date solution. Different modules are organized and arranged

independently, and this is the key to its being and efficient and responsive. it was our utmost wish

that we should come up with a module and efficient response system and it was only possible when

we worked out thoroughly on its design process by identifying its major modules and their

interrelationship.

Implementation Modules: The whole defense system consists of the following major modules

which are inter related in such a way that the provide the maximum functionality:

1. Node Registration and Validation Module.

2. Dynamic Packet capturer

3. Dynamic Check System Module

4. Hook Activator Module

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3013

System would dynamically search for the live nodes and would make their entry in the

database then on the basis of this entry it will decide the fate of all the incoming packets.

3.3.1. Node Registration and Validation Module

This is the 1st and foremost operation performed by the system whenever executed by

administrator. As discussed earlier the system goes through the available database and also let the

user if he wants to introduce a new node into the database. Now whenever the user makes an entry of

a node IP address so it tries to validate its authenticity by executing a ping and ARP request on that

specific IP address. Further, the user gives an IP address which generate Message "Node Not Found"

which means that an error has been occurred in the validation process.

Error: Node Not Found

Possible Causes: Invalid IP address.

Invalid IP Address Format.

Client Powered Off.

Network too Busy (No response to Ping Request)

If all the above cases do not exist, then it means that user has entered a valid IP address. So,

the next steps this module will perform is to trace out the MAC address of this IP address. When

MAC address is traced out, its entry is entered in the back end database.

Figure 10 - Sequence Diagram for Validation Module

3.2.2. Packet Capturing Module

After registering the new nodes (if there are) the dynamic packet capturing module starts its

backend processing by analyzing all the incoming packets. This module dynamically captures all the

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3014

incoming packets at Layer 2, i-e Data Link Layer. Windows never allows an application to directly

access the data link layer instead it provides certain DLLs which facilitates the user by giving access

to the Data Link Layer. This module is using the WinPcap library which enables to capture data

packets from the LAN. In fact WinPcap is a library built in Microsoft Visual C++ and to use it in the

.NET framework a wrapper name PacketX is provided which enables one to sort out WinPcap library.

Figure 11 - Working Level of Packet Capture

3.3.3. Dynamic Check System Module

The dynamic check system module gets activated once the packet is captured. This is the main

area where the SYN flood Detection policy has been implemented and also the required defense

system is defined. This makes it core area which goes through many inner modules including

activating other modules on the server as well as synchronizing with that specific client which is

either flooder or acting as a flooder (hijacked by an attacker).

Figure 12 - Working Level of Dynamic Check System

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3015

3.3.4. Hook Activator

Once a packet has been identified for being a member of flood, then before the next packet

may reach the destination, the active hooks are activated. They are responsible for discarding all the

incoming traffic from that specific client. One of the main features implemented by our security

system is that it not only stops all the traffic coming from that node but also totally paralyzes that

client and would no more be able to generate any flood.

Figure 13 - Working Level of Hooks (Activated on Both Client and Server)

4. Results and Discussion

The System is tested with respect to various factors like Detection time, Processing time, and

Diagnosis. Some of the factors were responding slowly in start but with some changes they get better

and were efficient enough to tackle the situation [58]. There are various factors which help to

determine the performance in the real scenario. These are SYN attack detection time,

response/processing time for the packet and detecting attacking packets. The comparative

performance of the three factors is reflected in Figures 14, 15 and 16. The baselines used in this

research consists of INDIGSOL, FlowRanger [59], Proposed [60], SPI-CSF [61] and FCFS [59]

algorithms.

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3016

Figure 14 - SYN Attack Detection Time by Baselines

It is shown in the Figure 14 that the INDIGSOL algorithm is taking least time to detect attack

whenever it is performed. The algorithms like FlowRanger, proposed, SPI-CSF and FCFS are taking

more time respectively. This shows that the performance of INDIGSOL is not affected by the number

of packets which are gradually increased in six different scenarios. These scenarios comprised of

1000, 3000, 6000, 9000, 12000 and 15000 packets, respectively. At the start, it is shown that all

baselines are performing well till 6000 (scenario two) packets but after further increased in packets

transmission, other baselines suffer in performance but INDIGSOL remained better. This shows that

INDIGSOL has better scalability in determining the attacked packets with minimum time as

compared to other baselines.

Figure 15 - Processing/Response Time by Baselines

Similarly, Figure 15 is showing the processing/response time when SYN flood is detected. It

is once again clear that INDIGSOL due to its ability to detect the malicious packet early can response

to attack immediately as compared to other baselines. In this case the attacker is stopped to send the

flooded packets and further cannot send more.

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3017

In the Figure 15, attaching packets detected by the defense system is shown. There are six

scenarios in which 50, 100, 200, 300, 400 and 500 malicious packets are injected and checked with

all baselines in order to validate their performance. It is observed that in the first case with 50

malicious packets in a total of 100 packets, the baselines FlowRanger, SPI-CFS and FCFS could not

detect 10, 10 and 20 malicious packets in form of SYN flood. The algorithms like INDIGSOL and

proposed detected all malicious packets with complete accuracy. In the second scenario, baselines

such as Proposed, FlowRanger, SPI-CSF and FCFS could not detect 10, 10, 10 and 20 malicious

packets whereas, INDIGSOL detected all 100 malicious packets in a total of 1000 packets. In the

third scenario with 200 malicious packets in a total of 3000 packets, the baselines such as

FlowRanger, Proposed, SPI-CSF and FCFS could not detect 30, 60, 70 and 80 packets respectively.

However, the INDIGSOL was able to accurately detect all 200 malicious packets with least response

time. In the fourth scenario, 300 malicious packets are injected in a total of 5000 packets. The

baselines FlowRanger, Proposed, SPI-CSF and FCFS could not detect 40, 60, 60 and 90 malicious

packets whereas, INDIGSOL is left with 2 packets undetected. In the fifth scenario, 400 malicious

packets are injected in which INDIGSOL, FlowRanger, Proposed, SPI-CSF and FCFS could not

detect 7, 60, 80, 100 and 130 malicious packets. In the last scenario, 500 malicious packets are

inducted leaving 13, 90, 120, 170 and 200 malicious packets undetected for INDIGSOL,

FlowRanger, Proposed, SPI-CSF and FCFS respectively. Overall, the accuracy in detection of

malicious packets for INDIGSOL, FlowRanger, Proposed, SPI-CSF and FCFS are 99%, 85%, 79%,

74% and 63% respectively.

Figure 16 - Attacking Packets Detected by Baselines

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3018

4.1. Statistical Analysis

In order to perform statistical analysis, a parametric test with 2 variables is needed because

comparison of one baseline is performed with INDIGSOL at a time. For this purpose, ANOVA test is

performed to determine the significance of our study given in Tab. 4. Similarly, the values such as

mean, standard deviation (SD), p-value, and t-value in the same Table are also given. The level of

significance, meanwhile, is set to p< 0.05. Furthermore, the hypothesis is defined as:

H0: INDIGSOL and other baselines have no difference.

H1: A significant difference exists between INDIGSOL and other baselines.

Table 4 - Statistical Comparison of INDIGSOL with Baselines

ANOVA test (SYN Detection time)

Source of Variation SS Df MS F P-value F crit

Between Groups 3253.81 6 932.30 3.1953 0.01134 2.146408

Within Groups 14566.88 60 300.587

Total 17820.69 66

ANOVA test (Processing/Response time)

Source of Variation SS Df MS F P-value F crit

Between Groups 20710.01 6 3318.144 2.102806 0.027472 2.36407

Within Groups 1024003 60 16841.24

Total 1044713.01 66

ANOVA test (Number of malicious packets)

Source of Variation SS Df MS F P-value F crit

Between Groups 1.13E+08 6 16830331 4.558748 0.00558 2.23654

Within Groups 2.55E+08 60 3941930

Total 3.68E+08 66

It is visible that the p-values in all three cases are less than the significance level of <0.05,

which states that their exist a significant difference between IDIGSOL and baselines. The null

hypothesis H0 is rejected and alternate hypothesis H1 is there accepted.

5. Conclusion

The availability of computing resources is important to perform useful operations. SYN

flooding over the years is one of the major securities problems that opens large number of half open

TCP connections and making the server all time busy. This will result in unavailability of computing

resources to the legitimate users. In this research, INDIGSOL approach is proposed as a defense

system that monitors and stop SYN flood packets at the origin. The adopted approach is an efficient

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3019

in such situations, as most of the applications built for this purpose are designed in Low Level

Languages. Four modules of the INDIGSOL are developed and implemented such as node

registration and validation, packet capturing, dynamic check system, and hook activation which

perform extensive monitoring and filtering on the incoming packets and forwards only legitimate

ones. By comparing this approach with some baselines in terms of malicious packets detection time

and response time in six real-time scenarios helps to efficiently run the network with 99% average

accuracy. To perform Exclusive filtering, WINDOWS HOOKS are used which then needs to be

configured according to one’s requirements, and this is considered to be a difficult task. Because of

security concerns the TCP/IP protocol stack of WINDOWS operating systems is dynamically

reconfigured often.

Acknowledgment: Thanks to our families & colleagues who supported us morally.

Funding Statement: The authors extend their appreciation to King Saud University for funding

this work through Researchers Supporting Project number (RSP-2021/387), King Saud University,

Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report

regarding the present study.

References

S. Sen and J. Wang, "Analyzing peer-to-peer traffic across large networks," IEEE/ACM Transactions

on Networking, vol. 12, no. 2, pp. 219-232, 2004.

J. Xu and W. Lee, "Sustaining availability of web services under distributed denial of service

attacks," IEEE Transactions on Computers, vol. 52, no. 2, pp. 195-208, 2003.

R.K.C. Chang, "Defending against flooding-based distributed denial-of-service attacks: a tutorial,"

IEEE Communications Magazine, vol. 40, no. 10, pp. 42-51, 2002.

Y. Gilad and A. Herzberg, “Fragmentation considered vulnerable: blindly intercepting and discarding

fragments,” in Proc. WOOT, San Francisco, USA, pp. 1-2, 2011.

A. Degirmencioglu, H.T. Erdogan, M. A. Mizani and O. Yılmaz, "A classification approach for

adaptive mitigation of SYN flood attacks: Preventing performance loss due to SYN flood attacks," in

Proc. NOMS, Istanbul, Turkey, pp. 1109-1112.

T.M. Thang, C. Q. Nguyen and K. V. Nguyen, "Synflood spoofed source DDoS attack defense based

on packet ID anomaly detection with bloom filter", in Proc. ACDT, Hanoi, Vietnam, pp. 75-80, 2018.

M. Junaid, M. Hussain, A. Masood, A. Noreen and M. A. Whala, "Evaluation of framework for the

comparative analysis of symmetric block ciphers," in Proc. ICCSA, Jeju, Korea, pp. 1-4, 2009.

G. John, "Analysis Techniques for detecting coordinated attacks and probes," in Proc. of USENIX

Workshop on Intrusion Detection and Network Monitoring, California, USA, pp. 329-339, 1999.

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3020

W.R. Stevens, “TCP/IP Illustrated, The protocols”, in The Addison-Wesley Professional Computing

Series, 2nd ed, vol.1. Karnataka, India: Pearson, pp. 1-111, 2011.

I. Fadia, “Network security: a hacker's perspective”, 2nd ed, India, Macmillan India Ltd, 2006.

J. Postel, “Transmission control protocol, STD 7, RFC 793”, in The Stormshield Network Security,

vol. 2, version 2.5. France: Stormshield press, pp. 1-34, 2016.

E. Alomari, “Botnet-based distributed denial of service (DDoS) attacks on web servers: classification

and art,” International Journal of Computer Applications, vol. 49, no. 7, pp. 24-32, 2012.

A. Sharma and A. Bhasin, "Critical investigation of denial of service and distributed denial of service

models and tools," in Proc. ICACCCN, Noida, India, pp. 546-550, 2018.

A. Anitha, J. Jaya Kumari and G.V. Mini, "A survey of P2P overlays in various networks," in Proc.

ICSCCN, Thuckalay, India, 277-281, 2011.

S. Khak Abi, "Preventing SYN flood dos attacks: an improvement to SYN cookies," in Proc. ICISI,

TX, USA, 235-235, 2009.

M. Chan, H. Litz, and D. R. Cheriton, “Rethinking network stack design with memory snapshots,” in

Proceedings of Hot OS, SAP, New Mexico, 1-22, 2013.

R. Braden, Request for comments (RFC1122), California, USA: Internet Engineering Task Force,

1989. https://www.rfc-editor.org/rfc/pdfrfc/rfc1122.txt.pdf

L. DeNardis, “The internet design tension between surveillance and security,” IEEE Annals of the

History of Computing, vol. 37, no. 2, pp. 72-83, 2015.

T. Nakashima and S. Oshima, "A detective method for SYN flood attacks," in Proc. ICICIC, Beijing,

China, pp. 48-51, 2006.

C. Cristian, P. Druschel, and D.S. Wallach, "Performance analysis of TLS web servers," in Proc.

NDSSS, California, USA, 2002.

S. Farraposo, K. Boudaoud, L. Gallon and P. Owezarski, “Some issues raised by DoS attacks and the

TCP / IP Suite,” in Proc. SAR, Batz surmer, France, 2005.

P. Owezarski, “Internet network metrology and attack analysis,” in Proc. SAR, Nancy, France, 2003.

K. Kang, “Anomaly detection of hostile traffic based on network traffic distributions,” in Proc.

ICOIN. Estoril, Portugal, pp. 781-790, 2007.

T. Baba and S. Matsuda, "Tracing network attacks to their sources," IEEE Internet Computing, vol. 6,

no. 2, pp. 20-26, 2002.

J. Liu, Z. Lee and Y. Chung, “Dynamic probabilistic packet marking for efficient IP traceback,”

Computer Networks, vol. 51, no. 3, pp. 866-882, 2007.

W.J. Drake, V.G. Cerf and W. Kleinwächter, “Internet fragmentation: an overview,” in Proc. WEF,

1-67, 2016. Krynica, Poland.

K. Ingols, M. Chu, R. Lippmann, S. Webster and S. Boyer, "Modeling modern network attacks and

countermeasures using attack graphs," in Proc. CSA, HI, USA. pp. 117-126, 2009.

White Paper, CERT Advisory CA-1996-21: TCP syn flooding and IP spoofing attacks. Carnegie

Mellon University, USA, 2006: http://www.cert.org/advisories/CA-1996-21.html

K. Hafner, “Cyberpunk: outlaws and hackers on the computer frontier,” 1st ed., vol. 1. NY, USA:

Simon & Schuster Press, pp. 1-400, 1995.

https://www.amazon.com/W-Richard-Stevens/e/B000AP9GV4/ref=dp_byline_cont_book_1
https://arxiv.org/search/cs?searchtype=author&query=Alomari%2C+E

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3021

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, "Avant-guard: scalable and vigilant switch flow

management in software-defined networks," in Proc. SIGSAC conference on Computer &

communications security, Berlin, Germany, pp. 413–424, 2013.

M. Ambrosin, M. Conti, F. De Gaspari, and R. Poovendran, "Line switch: efficiently managing

switch flow in software-defined networking while effectively tackling dos attacks," in Proc. The 10th

ACM Symposium on Information, Computer and Communications Security, Singapore, pp. 639–644,

2015.

T. Chin, X. Mountrouidou, X. Li, and K. Xiong, "Selective packet inspection to detect dos flooding

using software defined networking (SDN)," in IEEE 35th International Conference on Distributed

Computing Systems Workshops, Columbus, USA, pp. 95–99, 2015.

S. Fichera, L. Galluccio, S.C. Grancagnolo, G. Morabito, and S. Palazzo, "Operetta: An open

flow-based remedy to mitigate tcp synflood attacks against web servers," Computer Networks, vol.

92, no. 1, pp. 89–100, 2015.

R. Mohammadi, R. Javidan and M. Conti, "SLICOTS: An SDN-based lightweight countermeasure

for TCP SYN flooding attacks," IEEE Transactions on Network and Service Management, vol. 14,

no. 2, pp. 487-497, 2017.

M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, "Sphinx: detecting security attacks in software-

defined networks." in Proc. NDSS, CA, USA, pp. 1-15, 2015.

S. Evmorfos, G. Vlachodimitropoulos, N. Bakalos, and Erol Gelenbe, “Neural network architectures

for the detection of SYN flood attacks in IoT systems,” In Proc. PETRA. Karfu, Greece, Article 69,

pp.1–4, 2020.

E. Pratama and I.P. Agus, “Tcp syn flood attack prevention using SPI method on CSF a PoC,”

Bulletin of Computer Science and Electrical Engineering, vol. 1. no. 2, pp. 63-72, 2020.

J. Cheng, C. Zhang, X. Tang, V.S. Sheng, Z. Dong et al., "Adaptive DDoS attack detection method

based on multiple-kernel learning," Security and Communication Networks, vol. 1, Article

ID 5198685, 19 pages, 2018.

J.I. Ye, X. Cheng, J. Zhu, L. Feng and L. Song, "A DDoS attack detection method based on SVM in

software defined network,” Security and Communication Networks, vol. 2018, Article

ID 9804061, 8 pages, 2018.

D. Gautam and V. Tokekar, “A novel approach for detecting DDoS attack in MANET,” Materials

today: Proceedings, vol. 29, no. 2, pp. 674-677, 2020.

A. Duwairi, A. Quraan, and A. Qader, “ISDSDN: mitigating SYN flood attacks in software defined

networks,” J Netw Syst Manage, vol. 28, pp. 1366–1390, 2020.

M. Nugraha, I. Paramita, A. Musa, D. Choi and B. Cho, “Utilizing OpenFlow and S Flow to detect

and mitigate SYN flooding attack,” J. Kor. Multimed. Soc, vol. 17, no. 8, pp. 988–994, 2014.

P. Kumar, M. Tripathi, A. Nehra, M. Conti and C. Lal, “SAFETY: Early detection and mitigation of

TCP SYN food utilizing entropy in SDN,” IEEE Trans. Netw. Serv. Manag, vol. 15, no.4, pp. 1545–

1559, 2018.

S. Kumar, “Classification and detection of computer Intrusions,” PhD. dissertation, Purdue

University, USA, 1995.

C.E. Landwehr, A.R. Bull, J.P. McDermott and W.S. Choi, “A taxonomy of computer program

security flaws,” ACM Computing Surveys, vol. 26, no. 3, pp. 211- 254, 1994.

https://www.sciencedirect.com/science/article/pii/S2214785320354250#!
https://www.sciencedirect.com/science/article/pii/S2214785320354250#!

ISSN: 2237-0722

Vol. 11 No. 4 (2021)

Received: 08.06.2021 – Accepted: 09.07.2021

3022

U. Lindqvist and E. Jonsson, “How to systematically classify computer security intrusions,” In Proc.

IEEE Symposium on Security and Privacy, CA, USA, pp. 154-163, 1997.

J.W. Haines, L.M. Rossey, R.P. Lippmann and R.K. Cunningham, "Extending the DARPA off-line

intrusion detection evaluations," in Proc. DISCEX, CA, USA, pp. 35-45, 2001.

K. Kendall, “A database of computer attacks for the evaluation of intrusion detection systems,”

Masters. Dissertation, MIT, USA, 1999.

R.P. Lippmann, “Evaluating intrusion detection systems: the 1998 DARPA off-line intrusion

evaluation,” in Proc of the DISCEX, USA, pp 12-26, 2000.

J. Undercoffer, J. Pinkston, A. Joshi and T. Finin, “A target-centric ontology for intrusion detection,”

in proc. of the IJCAI, Acapulco, Mexico, pp. 47-58, 2003.

S. Specht and R. Lee, “Taxonomies of distributed denial of service networks, attacks, tools, and

countermeasures,” in Proc. ICPADS, USA, pp. 543-550, 2004.

J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense mechanisms,”

SIGCOMM Computer Communication Review, vol. 34, no. 2 pp. 39–53, 2004.

A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for classifying denial of service

attacks,” in Proc. SIGCOMM, New York, NY, USA, pp. 99–110, 2003.

N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown and G. Salmon, “Experimental study of router

buffer sizing,” in Proc. SIGCOMM, New York, NY, USA, 1pp. 97–210. 2008.

M.A. Saleh and A. Manaf, "Optimal specifications for a protective framework against HTTP-based

DoS and DDoS attacks," in Proc. ISBAST, KL, Malaysia, pp. 263-267, 2014.

P. Owezarski and N. Larrieu, “Internet traffic characterization – an analysis of traffic oscillations,” In

Proc. HSNMC, Toulouse, France, pp. 370-374 2004.

S. S. Manvi and P. Venkataram, "Adaptive bandwidth reservation scheme for multimedia traffic

using mobile agents," in Proc. ICHSNMC (Cat. No.02EX612), Jeju, South Korea, pp. 370-374, 2002.

S. Dietrich, N. Long, and D. Dittrich, “Analyzing distributed denial of service tools: the shaft case,”

in Proc. USENIX conference on System administration, USA, pp. 329–340, 2000.

L. Wei and C. Fung, "Flow Ranger: a request prioritizing algorithm for controller DoS attacks in

software defined networks," in Proc. ICC, London, UK, pp. 5254-5259, 2015.

C. Deokjai, "Utilizing openflow and sflow to detect and mitigate SYN flooding assault," Journal of

the Korean Multimedia Society, vol. 17, no. 8, pp. 988–994, 2014.

I. Pratama, "TCP syn flood attack prevention using SPI method on CSF: a PoC", Bulletin of

Computer Science and Electrical engineering, vol. 1, no. 2, pp. 63–72, 2020.

