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Abstract 

In this research article, an 2// MM  queueing system operating in a multi-phase random environment 

subject to disaster and repair is studied. The random environment discussed here has N  phases and 

the k  - th phase is exponentially distributed with mean .,...,2,1,1 Nkk =  The queueing system behaves 

like 2/)(/)( kk MM   while in the k  - th phase. At the end of the k - th phase, a disaster occurs where 

the servers are taken for repair and all the customers in the system are wiped out. Both the servers are 

repaired jointly and the repair time is exponentially distributed with mean ,1 0 Immediately after the 

repair completions, the system goes to phase k  with probability kq . During repair time, Customers are 

permitted to enter the queueing system. The probabilistic behaviour of the system is studied in steady 

state by using probability generating function technique. Some performance measures of this queueing 

model are also obtained. 
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1. Introduction 

 

Several researchers have studied many-server queueing systems (see, for example Karlin and 

McGregor [4], Takacs [11], Kleinrock [5], Natarajan [9], and Dharmaraja and Rakesh Kumar [3]). A 

few researchers have obtained transient solution of many-server queueing systems (see Parthasarathy 
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and Sharafali [10], Krishna Kumar and Arivudainambi [6], Krishna Kumar and Madheswari [7] and -

Seedy et al. [1],). On the other hand, many authors have paid their attention to study some special class 

of queueing systems subject to impatience of customers and/or randomly occurring disasters (see for 

example, Sengupta [12], Chakravarthy [2], Krishna Kumar et al. [8]). The steady-state behavior of an 

1// MM  queue operating in random environment subject to disasters where the underlying 

environment is described by a n  phase continuous-time Markov chain have been analyzed. The time-

dependent behaviour of the above said model has also been analyzed. However, to the best of our 

knowledge, 2// MM queue systems operating in a random environment subject to disasters and repair 

have not been studied so far in literature. In this research paper, we block this gap by obtaining a steady-

state analysis of a M/M/2 queueing system operating in a uncertain random environment subject to 

disasters and repairs. The sections in this paper are arranged in the following manner: Section 2 briefly 

describes the model. In section 3, the time-dependent probabilities of the system are discussed and its 

the integral equations are derived. In section 4, explicit expressions of the steady-state probabilities of 

the above mentioned queueing system are obtained. 

 

2. Model Description 

 

Let us consider a two server queueing system working in a random environment. We assume 

that the environment is in any one of the 1+m  states 0, 1, 2, …, N . The environmental state 0 

represents the state that the servers are jointly undergoing repair. The random repair time is an 

exponential random variable distributed with mean ,
1

0
 In the course of repair time, customers join 

the system according to Poisson process with arrival rate 0 . Immediately after the repair, the system 

goes to phase Nkk ,...,2,1, =  with probability kq ; such that 1
1

= =

N

k kq . The system resides in phase 

k  for a random interval of time that is exponentially distributed with mean k1  and at the end of the 

residing period, all customers in the system are washed out and the system moves to phase 0: When the 

environment is in phase k , the system behaves like an 2/)(/)( kk MM   queue with arrival rate k

and service rate .k  

During time 0=t , we presume that a catastrophe has just occurred so that the system is in phase 

0 (repair state). Let )(tE  denote the phase of the environment at time t  and at time t, let )(tX  denotes 
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the number of customers in the queueing system. Then the joint process  0))(),(( ttEtX  is a 

continuous time parameter Markov process whose state space is 

( ) Nkjkj ,,2,1,0;,2,1,0,  ==
 

We define the state probability as follows: 

( ) ( ) ( ) ( ) ( )   ,2,1,0;,2,1,000,00,Pr,, ======= jNkEXktEjtXtkjp  
(1)

 

In the next section, we derive the integral equations for ),,( tkjp  

 

3. To Obtain the Integral Equations in Steady-State 

 

Using the convolution operation 

duutguftgtf
t

 −=
0

)()()()(
 (2)

 

and renewal theoretic arguments, we find the following integral equations: 

Case 1: 0k0,=j =  

( ) )3(),,(,0,0
)(

1 0

)( 0000 t
N

k j

t
ektkjpetp

  +−

=



=
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 +=
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Case 2: 0k1,2,...,=j =  
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)( 00 t
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( ) kqtptkp 0),0,0(,,0 = © k

t
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)(
+

+−
© )5(

)( tkke
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4. Steady-state Solution 

 

The limiting state probabilities are defined by 

)8(),,(),( lim tkjpkj
t →

=  

Using the Laplace transform’s final value theorem, equation (8) gives 

)9(,),,(),( *

0
lim skjspkj

s→

=
        (9)

 

Where ),,(* tkjp is the Laplace transform of ),,( tkjp Applying Laplace transform on both 

sides of equations (3)-(7), we obtain 

( ) )10(,),,(*1,0,0*)(
1 0

00 k

N

k j

tkjpsps 
=



=

+=++ 
 (10)

 

( ) ( ) )11(,...2,1,,0,1*,0,*)( 000 =−=++ jsjpsjps 
 (11) 

( ) ( ) )12(;,,...2,1,),,1(*,0,0*,,0*)( 0 Nkskpqspskps kkkk =+=++ 
 (12) 

( ) ( )

)13(;,,...2,1,2),,2(*),,0(*

,0,1*,,1*)( 0

Nkskpskp

qspskps

kk

kkKk

=+

+=+++





   (13)
 

( ) ( )

)14(.,,...2,1:,...3,2,2),,1(*),,1(*

,0,*,,*)2( 0

Nkjskjpskjp

qsjpskjps

kk

kkKk

==++−

+=+++





 (14) 

Multiplying both sides of equations (10)-(14) with s and applying equation (9), we obtain 

( ) )15(,),(10,0)(
1 0

00 k

N

k j

kj
=



=

+=+ 

       (15)

( ) )16(,...;2,1,)0,1(0,)( 000 =−=+ jjj 
                 (16)

( ) )17(,...,2,1,),1()0,0(,0)( 0 Nkkqk kkkk =+=+ 
   (17)

( ) )18(,...,2,1,2),2(),0()0,1(,1)( 0 Nkkkqk kkkkkk =++=++ 
 (18)

( )

)19(,...,2,1,...;3,2

,2),1(),1()0,(,)2( 0

Nkj

kjkjqjkj kkkkkk

==

++−+=++ 

 (19)
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The system of equations (16)-(19) together with the total probability law can be explicitly 

solved. The result is given in the following theorem: 

 

4.1Theorem. The limiting state probabilities are given by 
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( ) ( )
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822
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k =
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Proof: 

From equation (16), we get )20(,...;2,1),0,0()0,(
00

0 =










+
= jj
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  (20) 

define 

( ) ( )


=

==
0

.,...,2,1,0,,
j

j

k NkkjG   

From equation (20), we get ( )
( )
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000

00

0 





−+

+
=G

   (21) 

Putting 1=  in equation (21), we get ( )
( )

( ) ( )22,0,01
0

00

0 


 +
=G

 (22) 

We Multiply equation (19) by j on both sides and summing from 2=  to  , we get 
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( ) ( ) ( ) ( ) ( ) )23(.,12,10,,2
222 2

0  


=



=



=
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++−+=++
j

j
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j

j

k

j j
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 (23) 

Simplifying equation (23) by using equations (17) and (18), we get 

( )
( ) ( )( )  ( )( ) ( ) 
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22

21,010,0
2

00 Nk
kGq

G
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Putting 1=  in (24) and using (22), we get 
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By total probability law, we get ( ) ( )26.1,
0 0


=



=

=
N

k j
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From equation (26), we get n ( ) ( )2711
0

=
=

N

k

kG

           (27)

 

Substituting equations (22) and (25) in equation (27), we obtain 

( )

( )
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1
0

00 
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 =

N

k
k
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      (28)

 

It is evident that ( )kG is analytic inside the unit disk .1  Consequently, the numerator of 

the right hand side of (24) disappears at the zeros of the denominator of the right hand side of (24). 

The zeros of the denominator of the right hand side of (24) are given by 

( ) )29(.022 2 =−−++ kkkkk 
      (29)

 
The discriminant of the quadratic equation (29) is 

( ) ( ) .8282
22

kkkkkkkkkk  +++=−++  

Hence both the roots of equation (29) are real, and they are given by 

( ) ( )
)30(.

2

822
2
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The product of the roots of equation (29) is 
k

k

kk





2
=  . For stable solution, we assume that 
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.2 kk   Then .22 kkkk  +  It is easy to establish that 10  k  Further, we find 

that 1k  Using the roots k  and k equation (24) leads to 

( )
( ) ( )( )  ( )( ) ( ) 

( )( )
( )32.,...2,1,

21,010,000 Nk
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  (32)

 

Invoking the analyticity of ( )kG in ,1  the numerator on the right hand side of equation 

(32) vanishes at k = Consequently, we get 

( ) ( )( )  ( )( ) ( )  ( )33021,010,000 =++−−−+ kkkkkkkkk kGq 
    (33)

 

Using equation (33), we get 
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Using equation (33) in equation (32), and after much algebraic simplification, we obtain 
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Equating the coeffcients of 0 on both sides of equation (35), we get back equation (34). 

Equating the coeffcients of ,...2,1, =jj , on both sides of equation (35), we obtain 
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The proof is now complete. 
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5. Performance Measures 

 

To illustrate, we assume the below mentioned values for the parameters of our model subject to 

the stability condition :,...,2,1,2 Nkkk =   

;2.1;5.1 00 == 
 

 

2.01 =q  03.01 =  8.11 =  6.21 =  

3.02 =q  04.02 =  6.11 =  4.21 =  

2.03 =q  01.03 =  5.11 =  5.21 =  

2.04 =q  02.04 =  7.11 =  7.21 =  

1.05 =q  03.05 =  4.11 =  4.21 =  

 

We have computed the steady-state probabilities ( )kj, and obtained the following table: 

 

Table 1: Steady-state probabilities 

j  ( )0,j  ( )1,j  ( )2,j  ( )3,j  ( )4,j  ( )5,j  

0 0.0077 0.0672 0.0779 0.2235 0.1082 0.0379 

1 0.0034 0.0465 0.0518 0.1341 0.068 0.0221 

2 0.0015 0.0161 0.0173 0.0403 0.0215 0.0065 

3 0.0007 0.0056 0.0058 0.0121 0.0068 0.0019 

4 0.0003 0.0019 0.002 0.0037 0.0022 0.0006 

5 0.0001 0.0007 0.0007 0.0011 0.0007 0.0002 

6 0.0001 0.0002 0.0002 0.0003 0.0002 0.0001 

7 0 0.0001 0.0001 0.0001 0.0001 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

 

5.1 Mean Queue Size in k-th phase, k = 0,1,2,…, N 

 

Let E[Lk] denote the stationary mean number of customers in the k-phase. Then, we have 

  ( ) ( )


=

==
1

37.,...,2,1,0,,
j

k NkkjjLE   

Then, the stationary mean total number of customers in the queueing system is obtained by 
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5.2 Mean Number of Customers Washed Out by Disasters per Unit Time from the System 

 

If C denote the number of customers wiped out from the queueing system per unit time, then 

  ( )   ( )  
=



= =

==
N

k j

N

k

kkk LEkjjCE
1 1 1

39.,   

Using table 1, we obtain the following table of mean values: 

        2743.0,1173.0,1091.0,0111.0 3210 ==== LELELELE
 

        0149.0,7017.0,0444.0,1455.0 54 ==== CELELELE
 

 

6. Conclusion 

 

Steady -state analysis of an 2// MM  queueing system is discussed which was operating on a 

multi-phase uncertain random environment subject to disaster and repair and its steady state probability 

is obtained. Further, we also seek the characteristics of 2// MM queueing system which operates in a 

multi-phase uncertain environment subject to repair and disaster . 
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