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Abstract 

The factorization of a matrix into lower rank matrices give solutions to a wide range of computer 

vision and image processing tasks. The inherent patches or the atomic patches can completely 

describe the whole image. The lower rank matrices are obtained using different tools including 

Singular Value Decomposition (SVD), which is typically found in minimization problems of nuclear 

norms. The singular values obtained will generally be a thresholder to realize the nuclear norm 

minimization. However, soft-thresholding is performed uniformly on all the singular values that lead 

to a similar importance to all the patches whether it is principal/useful or not. Our observation is 

that the decision on a patch (to be principal/useful or not) can be taken only when the application of 

this minimization is taken into consideration. Thus, in this paper, we propose a new method for 

image denoising by choosing variable weights to different singular values with a deep noise effect. 

Experimental results illustrate that the proposed weighted scheme performs better than the             

state-of-the-art methods. 
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1. Introduction 

 

Low rank matrix (LRM) factorization is a crucial method in data analysis and representation. 

The raw data have a hidden configuration, and by revealing this configuration, an efficient 

representation of the data is feasible. This is the vital part of LRM factorization. When the original 
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image represented in a matrix is factorized into low rank matrices, egresses will be opened for a 

better matrix completion, data denoising, clustering and dimension reduction. This factorization has 

many attractive features which make it ideal to many tasks of image processing, though it is not 

completely developed and applied. This factorization uncovers the inherent structures while 

answering the sparseness problem associated with many raw data [1]. The solution for this 

factorization can be done using numerous optimization algorithms like gradient methods. It has 

strong statistical interpretation.  

The LRM factorizations are mainly of three types. They are basic, non-negative, orthogonal 

non-negative. The constraints imposed in non-negative and orthogonal non-negative are very much 

useful in many specific circumstances. The basic factorization is formulated as, 

),(
,

min
VULUVX

VU

T        (1) 

Here, nmRX  is the matrix to be estimated, kmRU  , knRV  are 2D matrices and L is 

the regularizing factor [2]. The non-negative factorization tries to represent the data matrix X using 

lower dimensional matrices, say U and V, which contains only non-negative elements. Now, the 

problem can be restated as follows. 

222

,

min
FFF

T VUUVXO
VU

      (2) 

where In 
F

. is Frobenius norm, α and β are the weights of Frobenius norms of matrices U and 

V. In addition to the advantage of revealing, the non-negative factorization requires less 

computational facility. There are few fixed schemes to obtain larger learning rates than the regular 

gradient based schemes. The orthogonal non-negative factorization requires the U and V to be 

orthogonal in addition to non-negative. The problem is formulated as follows. 

2

,

min

F

TUVXO
VU

        (3) 

The orthogonality condition waives of the regularization terms. The orthogonal non-negative 

factorization is proved to be equivalent to K-means clustering [3][4]. The LRM factorization has been 

in wide range of applications and in this paper its application to retrieval of degraded image is 

explored. Effective algorithms were proposed on denoising, including total variation [5], non-local 

means method [6] and block matching and 3D filtering [7]. The total-variation method tends to 

smooth out sharp edges and complexity of BM3D is very high. Consequent works deliberated sparse 

based methods, leading to better results [8]-[11]. The description and forming the dictionary common 
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to all input images as well as sub-dictionaries to specific input image plays crucial role in sparse 

techniques. For instance, [12] assessed the sparse domain coefficients by extracting the self-similarity 

in the degraded image. 

More recently, many sparse representation models focus on learning dictionaries from 

external database first. Then, the dictionary objects are clustered into few clusters. Then, from these 

clusters, sub-dictionaries are being formed based on the features of the observed image, hence 

realizing the real adaptive dictionary. Advantage of adaptively learning sub-dictionary to each input 

image or to each patch of input image is that the self-structural information is exploited well. As the 

patches collected from the noisy input image will contain the obvious noise, the sub-dictionary 

learned may not be the most accurate one. Correspondingly, the performance of the sparse-based 

models is limited. 

In this paper, a method for denoising is proposed using variable weights to different singular 

values. This method is designed with high amount of noise into consideration. Description of a matrix 

using low rank matrices provides solution to problems in many applications of image processing. 

SVD is one concept which can provide the low rank matrices accurately, which is originally used in 

nuclear norm minimization problems. It is observed that the decision on a patch can be taken only 

when the application of this minimization is considered. 

 

2. Back Ground 

 

LRM approximation aims to retrieve the low-rank matrix from its degraded version. It has 

large number of applications in machine learning and compute vision. For example, the low rank 

matrix generated from facial pictures of humans, makes it possible to restore the ruined faces in the 

image [13-15]. Low rank matrix data are common in real time. For instance, nonlocal similar patches 

in natural images [16], Netflix customer data [17] and video captured [18, 19] are all found to have 

low rank features.  In all these kinds of applications the LRM approximation scheme can enable high 

quality image restoration tasks. In recent years with the rapid development of convex based 

optimization schemes, many important algorithms are reported in the literature [20, 21]. The LRM 

approximation schemes can be broadly categorized into two groups: LRM factorization schemes            

[22, 23] and nuclear-norm minimum (NNM) schemes [24-26]. 

Given an input matrix X, LRM factorization intends to calculate another matrix Y which is 

very nearby to X under stipulated conditions. Another constraint on this representation is that the 
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matrix should be factorized into multiplication of two low rank matrices. A large number of LRM 

factorization schemes were proposed in the literature. These range from techniques based on singular 

value decomposition to L1-norm robust LRM factorization algorithms [27-28]. In nuclear-norm 

minimization, first, nuclear-norm of matrix Y, ||Y||* is defined as follows 


j

j YY
1*

)( ,      (4) 

Here σ denotes singular values and ‘j’ recognizes specific patch. The aim of nuclear-norm 

minimization schemes is to get the lowest nuclear-norm while approximating X by Y. One distinct 

advantage of nuclear-norm minimization is that it is the close-fitting convex moderation to the            

non-convex LRM factorization. Candes and Recht showed that many LRMs can be seamlessly 

recuperated by unraveling nuclear-norm minimization problem [25]. Cai, Cand`es, and Z. Shen 

ascertained that Nuclear-norm Minimization based LRM approximation problem can be straight 

forwardly resolved using soft-thresholding on singular values [28]. It means the solution of 

*

2
minargˆ YYXY

FX  is given by 
TVUSY )(ˆ   . 

Here λ is a positive constant, TVUX  and )(S  is the soft thresholding function on the 

diagonal matrix  . The singular value soft thresholding was applied to solve numerous nuclear-norm 

minimization based problems, like representations with low rank for subspace clustering [14], low 

rank textures [29], robust PCA analysis [18, 21] and matrix completion [25, 30]. 

Though the nuclear-norm minimization is found to be used in many applications, it suffers 

from many limitations. Each singular value is treated in a similar way, which results in shrinking all 

of them by same factor when soft thresholdig is applied [20]. This neglects the prior knowledge 

which is available on singular values. The soft thresholding scheme associated with nuclear-norm 

minimization fails to take the benefit of such prior information. Zhang, Hu, Ye, Li, and He presented 

a truncated NNM model [31]. But the truncated NNM is not very much suitable as it gives a binary 

decision. To develop the flexibility, in this paper, a weighted NNM is proposed. The weighted 

nuclear-norm of the matrix Y is defined as 


j

jjw
YwY

1,*
)(       (5) 

Here w =[w1, w2, … , wn] and wi ≥ 0 is a weight associated with )(Yj . The weighted NNM 

is difficult to solve that the problem of NNM. Also, only a little work was reported in the literature as 

on now. In this paper, the problem of weighted NNM will be analyzed in depth with F-norm data 
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fidelity. The outcomes with different weights are studied and used to the problem of image denoising. 

Though image denoising is a classical and fundamental issue which has been comprehensively 

studied, it is quite a lively field. In contemporary years, image nonlocal self-similarity (NSS) 

exploitation has open the doors to the solutions to denoising [32-34]. From the concept of NSS, for a 

known local patch in a natural image, one can find numerous alike patches. A local patch refers to the 

patch of interest which will be processed and alike patch refers to the patch with less distance in 

similarity. NSS has been a driving force to many successful and popular schemes like NCSR [35], 

LSSC [36] and BM3D [37]. The traditional NNM was used in video denosing [38]. Dong, Shi, and Li 

proposed a scheme which combines L2,1-norm and NNM for restoration of degraded images. 

 

3. Proposed Method 

 

a. Weighted NNM 

 

The nuclear norm has certain conditions that are satisfied. These conditions are presented in 

this section with an insight into the application of it in image processing tasks. Consider the matrices 

P, Q, R and S. For all P, Q that belong to R, that satisfy P
T
Q = 0, 

,*,* ww
PQP        (6) 

FF
PQP        (7) 

For all M, 









SR

QP
M with mmRp  and nnRS  , and if 01  nmww  , then  

,*,*,* 21 WWW
SPM  Here      nmmmnm wwWandwwWwwW    ,,,, 12111

 

For all nXnRP and a diagonal matrix nnRW  with descending ordered elements at diagonal 

and assume that TSRP  be the SVD of P, then 

 PVWUtr
IVVIUU

WP T

i
TTii




,

max
)()(    (8) 

Here )(Pi , )(Wi  are the singular values of P and W and I is the identity matrix. If U = P 

and V = Q, then  PVWUtr T  touches its peak value.  

Now, for all nXmRQ , which is given by SVD as TVUQ  . With a nonnegative weight w, 

its solution for the problem of weighted NNM, Ŷ is given as 
TVHUY ˆˆ  where Ĥ can be calculated as
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,*

2
minargˆ

wFH HHH  . Based on the above, the global solution for weighted NNM 

is feasible and is given below. When the weights satisfy 01  nmww  , the solution is given by 

  T

w VUSY ˆ where TVUX  is the SVD representation of X, and  wS  is the soft thresholding 

operation with weight w.    0,max ijjjjw wS  . 

If the weights wi=1,….,n are in descending order, then a global minimum is not readily available. 

Let TQPB  as the SVD representation of B. Using the non-negative orthogonal LRM 

factorization, the following optimization will be solved. 

 
,*

2

,,

min
argˆ,ˆ,ˆ

w

T

F

T QPQP
QP

QP 


    (9) 

Here P and Q are orthogonal. The final estimation becomes 
T

w

T VQSPUY ˆ)(ˆˆ 
, 

When the 

weights are in ascending order, then the estimate becomes 
T

w VUSX )(ˆ 
.
 

 

b. Image Denoising using Weighted NNM 

 

The objective of image denoising is to recover the original image from its degraded version y 

= x + n, where n is presumed as an additive white Gaussian noise with zero-mean and variance 2

n . 

The popular work of Buades, B. Coll, and J.-M. Morel initiated an extensive study of NSS 

approaches for image denoising [32]. NSS signifies that there exists several repeated local patterns 

across a natural image. The phenomenon for denoising is that those similar patches of a patch which 

was lost in the process of noise, can be used to reconstruct the lost patch. The NSS methods like 

NCSR [35], LSSC [36], BM3D [37] and weighted coding with non-local similarity [40] have 

produced the state-of-the-art results. 

Methods like block matching [37] can be used to identify the similar non-local patches for a 

given local patch. Stacking the nonlocal similar patches into a matrix results in Xi. Then Xi = Yi + Ni. 

Here Yi and Ni are the respective patch matrices of initial image and noise. Essentially, Yi should be a 

low rank matrix. Hence the LRM approximation schemes should be employed to assess Yi from Xi. 

By the accumulation of all unknown or degraded patches, the complete image can be reconstructed. 

Certainly, the nuclear norm minimization schemes are implemented for video denoising [38]. In this 

paper, the proposed weighted NNM scheme to estimate Yi from Xi to yield image denoising. The 

algorithm is give below. 
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Algorithm 

Step 1: Define the energy functional 
,*

2

2

1
minargˆ

wiFii

n

Yi YYXY
i




 

Step 2: Define the weight to σj(Yi), the j
th

 singular value of Yi, inversely proportional to the  

              variance, i.e.,     ijSPj Yncw  

Step 3: Estimate the initial singular value by  0,)(max)(ˆ 22

nSPijij nXY    

Step 4: Accumulate the all the patches to get reconstructed image. 

 

The variance of noise 2

n will be used as normalization factor and the energy function is  

,*

2

2

1
minargˆ

wiFii

n

Yi YYXY
i




     (10) 

Evidently, the crucial concern is to find the weight vector w. For natural images, the larger 

singular values are more useful than smaller singular values. The large singular values are 

characterize the energy associated with major components of Yi. In denoising, when the singular 

values are large, they should be shrunk less. Hence the weight to σj(Yi), the j
th

 singular value of Yi, 

should be inversely proportional to the variance. The weight is defined to be, 

    ijSPj Yncw       (11) 

Here c is a positive constant,  =10
-16

 and nSP is the number of nonlocal similar patches in Xi. 

The above weight can be used in the proposed weighted NNM model to perform image denoising. 

One problem still left is that the singular values σj(Yi) are not existing.  

Here the assumption is that the noise is distributed evenly over the subspace spanned by the 

pair U and V, and the initial singular value is estimated as 

 0,)(max)(ˆ 22

nSPijij nXY        (12) 

When )(ˆ
ij Y is sorted in ascending order, the corresponding weights will be guaranteed to be 

in descending order.  By accumulating the patches obtained by following the above procedure, the 

image can be restored. 

 

4. Experimental Results 

 

This section is devoted to the experimental results obtained. A large number of test images are 

considered. In the experimentation, different levels of noise was considered and in this section the 
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results with standard deviation is varied from 10 to 100. The beauty of the proposed scheme is that 

even when the standard deviation of noise is as high as 100, the performance is better than many 

state-of-the-art schemes. The peak signal to noise ratio (PSNR) of degraded image for a standard 

deviation of 10, 25, 50, and 100 is found to be around 28.1 deciBels (dB), 20.14dB, 14.12dB and 

8.1dB respectively. Number of iterations and patch size are set based on noise level. For higher noise 

level, we need to choose bigger patches and run more times the iteration. By experience, we set patch 

size to 6 X 6, 7 X 7, 8 X 8 and 9 X 9 for σn ≤ 20, 20 < σn ≤ 40, 40 < σn ≤ 60 and 60 < σn, respectively. 

The performance of the weighted NNM when standard deviation is 10, 25, 50 and 100 is given in 

Tables 1, 2, 3 and 4 correspondingly. 

 

Table 1- PSNR (in dB) obtained in each iteration when standard deviation of noise is 10 

Iteration  House Pepper Monarch Airplane Lena Barbara Boat Goldhill Man 

Noisy 28.1 28.1 28.1 28.14 28.14 28.14 28.14 28.14 28.14 

1 33.97 32.65 32.57 33.65 34.11 32.92 32.43 32.33 31.86 

2 35.81 33.89 33.81 35.31 36.06 34.26 33.46 33.31 32.64 

3 36.54 34.54 34.51 35.96 36.85 34.98 33.93 33.76 32.98 

4 36.75 34.77 34.81 36.16 37.06 35.29 34.05 33.86 33.07 

5 36.83 34.84 34.95 36.23 37.13 35.42 34.08 33.87 33.09 

6 36.86 34.86 35.01 36.26 37.16 35.49 34.08 33.85 33.08 

7 36.87 34.87 35.03 36.26 37.17 35.51 34.08 33.83 33.06 

8 36.86 34.86 35.04 36.25 37.17 35.52 34.07 33.81 33.05 

 

Table 2- PSNR (in dB) obtained in each iteration when standard deviation of noise is 25 

Iteration  House Pepper Monarch Airplane Lena Barbara Boat Goldhill Man 

Noisy 20.14 20.14 20.14 20.18 20.18 20.18 20.18 20.18 20.18 

1 26.15 23.01 25.09 26.04 26.62 25.56 25.51 25.55 25.12 

2 29.22 25.71 27.12 28.93 29.58 27.96 27.79 27.86 27.04 

3 31.6 27.80 28.66 30.97 31.66 29.84 29.37 29.46 28.28 

4 32.42 28.52 29.37 31.55 32.26 30.67 29.85 29.88 28.65 

5 32.77 28.83 29.65 31.74 32.45 30.99 29.98 29.97 28.74 

6 32.95 28.99 29.76 31.81 32.52 31.14 30.02 29.99 28.75 

7 33.07 29.09 29.81 31.83 32.54 31.21 30.04 30 28.75 

8 33.14 29.16 29.83 31.84 32.55 31.24 30.04 30 28.74 
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Table 3- PSNR (in dB) obtained in each iteration when standard deviation of noise is 50 

Iteration  House Pepper Monarch Airplane Lena Barbara Boat Goldhill Man 

Noisy 14.12 14.12 14.12 14.16 14.16 14.16 14.16 14.16 14.16 

1 19.38 16.99 18.83 19.45 20.08 19.18 19.24 19.34 19.09 

2 22.36 19.61 21.16 22.48 23.20 21.86 21.98 22.19 21.61 

3 26.1 22.89 23.62 26.13 26.97 24.88 25.03 25.44 24.27 

4 28.41 24.91 25.21 27.88 28.78 26.71 26.51 26.97 25.52 

5 29.22 25.62 25.81 28.3 29.21 27.33 26.83 27.23 25.8 

6 29.58 25.94 26.05 28.43 29.35 27.55 26.91 27.29 25.87 

7 29.79 26.12 26.16 28.49 29.41 27.66 26.94 27.32 25.9 

8 29.93 26.24 26.21 28.53 29.45 27.72 26.95 27.34 25.92 

 

Table 4- PSNR (in dB) obtained in each iteration when standard deviation of noise is 100 

Iteration House Pepper Monarch Airplane Lena Barbara Boat Goldhill Man 

Noisy 8.1 8.1 8.1 8.14 8.14 8.14 8.14 8.14 8.14 

1 12.76 12.64 12.53 12.87 12.95 12.76 12.82 12.88 12.76 

2 15.24 14.98 14.74 15.45 15.63 15.19 15.31 15.45 15.18 

3 18.76 18.06 17.58 19.2 19.7 18.52 18.85 19.18 18.49 

4 22.86 21.25 20.47 23.27 24.66 22.02 22.55 23.21 21.82 

5 24.97 22.79 21.93 24.68 26.61 23.55 23.78 24.47 23.02 

6 25.63 23.27 22.4 24.96 26.97 23.94 23.96 24.64 23.25 

7 25.94 23.49 22.61 25.1 27.13 24.12 24.03 24.71 23.35 

8 26.1 23.6 22.71 25.17 27.2 24.21 24.06 24.74 23.4 

 

Interestingly the techniques resulted in a very close PSNR for different input images. This is 

because the low rank matrices which constitute the complete image will be from the same set of low 

rank matrices. The noise effect is less when the standard deviation is 10, hence the lower rank 

matrices of most of the images will be similar, and this is somehow analogous to the atomic structure 

of any particles. 

But when the noise effect is high, the set of low rank matrices required to represent all the 

images will be large. As a consequence, the results obtained with more noise by the means of a 

standard deviation of 100 will be somehow different with different input images. The same can be 

observed from the Table 2. Figures 1 and 2 shows input, degraded and denoised images with noise 

standard deviation of 10. The corresponding images are shown in Figures 3 and 4 for standard 

deviation of 100. The degradation as expected is too high with the noise standard deviation of 100. As 

it is evident from the Figures 3 and 4, the reconstructed image can well serve many applications. The 

performance of the proposed method is plotted in Figure 5. The Table 5 and 6 give the performance 

comparison of denoising by proposed method with the state-of-the-art techniques. In most of the 

cases, the proposed method gives better results compared to the remaining methods. 
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Figure 1- Results of Weighted NNM method with noise standard deviation 10 for input images1 to 5 

Original Input Image Noisy Image Reconstructed Image 
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Figure 2- Results of Weighted NNM method with noise standard deviation 10 for input images6 to 10 

Original Input Image Noisy Image Reconstructed Image 
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Figure 3- Results of Weighted NNM method with noise standard deviation 100 for input images 1 to 5 

Original Input Image Noisy Image Reconstructed Image 
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Figure 4- Results of Weighted NNM method with noise standard deviation 100 for input images 6 to 10 

Original Input Image Noisy Image Reconstructed Image 
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Figure 5- PSNR (dB) with different values of Noise Standard Deviation 

 

 

Table 5- Denoising results (PSNR) by different methods for standard deviation of 10 

Method House Pepper Monarch Airplane Lena Barbara Boat Goldhill Couple 

NNM[24] 35.97 33.77 33.54 32.19 35.19 34.40 33.05 32.89 32.97 

BM3D[37] 36.71 34.68 34.12 33.33 35.93 34.98 33.92 33.62 34.04 

EPLL[39] 35.75 34.54 34.27 33.39 35.58 33.61 33.66 33.48 33.85 

LSSC[36] 36.95 34.80 34.44 33.51 35.83 34.98 34.01 33.66 34.01 

NCSR[35] 36.80 34.68 34.51 33.40 35.85 35.00 33.91 33.69 34.00 

SAIST[34] 36.66 34.82 34.76 33.43 35.90 35.24 33.91 33.65 33.96 

Proposed 36.86 34.86 35.04 36.25 37.17 35.52 34.07 33.81 34.13 

 

Table 6- Denoising results (PSNR) by different methods for standard deviation of 100 

Method House Pepper Monarch Airplane Lena Barbara Boat Goldhill Couple 

NNM[24] 23.65 21.24 20.22 20.73 24.41 22.14 22.48 23.32 22.07 

BM3D[37] 25.87 23.39 22.52 22.11 25.95 23.62 23.97 24.58 23.51 

EPLL[39] 25.19 23.08 22.23 22.02 25.30 22.14 23.71 24.43 23.32 

LSSC[36] 25.71 23.20 22.24 21.69 25.96 23.54 23.87 24.47 23.27 

NCSR[35] 25.56 22.84 22.11 21.83 25.71 23.20 23.68 24.36 23.15 

SAIST[34] 26.53 23.32 22.61 22.27 25.93 24.07 23.80 24.29 23.21 

Proposed 26.52 23.81 22.95 25.31 27.27 24.37 24.11 24.77 23.56 

 

5. Conclusion 

 

In this paper, the low-rank matrix factorization was extended and improved nuclear norm 

minimization was proposed. The low rank matrix representation was shown to be an efficient way of 

representing whole image, and the set of these matrices is very less as compared to the whole image. 

In addition, the low rank matrices are shown to restore similar patches degraded by noise effect. To 

highlight the restoring or replicating phenomenon of low rank matrices, image denoising was taken as 

an application. The LRM based nuclear norm minimization was enhanced by including a weight to 
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the singular values by that enabling different importance to different singular values. Deep additive 

white Gaussian noise up to a standard deviation of 100 is considered. The experimental results 

showed a clear improvement of the performance of the proposed technique over other state-of-the-art 

methods. 
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