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Abstract 

In this paper, it is shown that the sets of all non-empty subsets Set( )X  of a topological space X  

with exponential topology is a covariant functor in the category of Top -topological spaces and 

their continuous mappings into itself. 

It is shown that the functor Set  is a covariant functor in the category of topological spaces and 

continuous mappings into itself, a pseudometric in the space Set( )X  is defined, and compact, 

connected, finite, and countable subspaces of Set( )X  are distinguished. It also shows various kinds 

of connectivity, soft, locally soft, and n  soft mappings in Set( )X . One interesting example is 

given for the YTOP  category. It is proved that the functor Set  maps open mappings to open, 

contractible and locally contractible spaces and into contractible and locally contractible spaces. 

Next, we study the problem of the propagation of mappings in the space Set( )X  and distinguish 

which sets the basic open sets of the space Set( )X  consist of. The following takes place: 

a) The Set  functor is a covariant functor in the Top  category; 

b) The functor Set :Top Top  preserves the layers of a continuous mapping, that is, 

1 1(Set( )) ( ( )) Set( ( ))f f A f A  . 

c) The functor Set  preserves the contractibility of topological spaces. 
 

Key-words: Functors, Mappings, Connection, Soft Mappings, Contractility, Homotopy, Absolute 

Extensors. 
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1. Introduction 

 

Let X  be a topological space. Let Set( )X  denote the family of all nonempty subsets of it, 

that is, Set( ) { : , }X F F X F   . Let 1 2 3{ , , ,..., }sF F F F   be a finite family of 

nonempty open subsets of the space X , that is, 1 2 3{ , , ,..., }sF F F F  , where 0iF   and iF  is 

open in X . Consider a set of the form: 

1 2
1

( , ,..., ) { :  
s

s i
i

O F F F A A F


   and iA F   for 1, }i s . 

The families of all sets of this kind are 1 2( , ,..., )sO F F F , i.e. 1 2{ ( , ,..., ) :sO F F FB= iF   is 

open in X  and non-empty form, by definition, the base of the exponential topology Vietoris of the 

Set  X . 

If X  is a metric space with metric  , then, following Hausdorff, it is natural to introduce the 

pseudometrics H  on the family Set( )X  using the formula: 

( , ) max{sup ( , ),sup ( , )}H
a A b B

A B a B b A  
 

  , 

those. a topological space with this H  Hausdorff pseudometric is a (Set( ), )HX                  

pseudo-metric space. 

Recall that a mapping ( , ) :x y X X R    is called pseudometric on a set X  if ( , )x y  

satisfies the following conditions: 

P1. ( , ) 0x x   for any X ;  

P2. ( , ) ( , )x y y x   for any x X , y X ; 

P3. ( , ) ( , ) ( , )x y y z x z     for any , ,x y z X . 

If we consider the family exp { : ,X F F X F    is closed in }X  of all non-empty 

closed subsets of the space X . This H  Hausdorff pseudo-metric will be the metric on expX . 

Obviously, exp X  is a subspace of Set( )X . 

Consider a mapping : Set( )i X X  assigning to each point x  a set ( )i X  consisting of 

exactly this one point x , i.e. ( ) { } Set( )i x x X  . For this, the mapping i  satisfies the equality  

1

1 2
1

( ( , ,..., ))
k

k i
i

i O F F F F



 .                                             (1) 
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This means that the mapping i  is continuous. For a family   consisting of one set  , we 

obtain from this that ( ) ( )i O X   . Hence, i  open mapping. Since it is one-to-one, by virtue 

of equality (1) it will be a topological embedding of the space X  into the space Set( )X . Hence, for 

any topological space X , we can assume that X - topologically lies in Set( )X . 

Thus, for any topological space X , a topological space Set( )X  is defined, which 

topologically contains the given space X  as a subset. 

Each mapping :f X Y  can be considered as follows : Setf X Y Y  . Hence, each 

mapping : Set( )f X Y  will be denoted by Set( ) :Set( ) Set( )f X Y  or, in short, by the 

Set( )f -mapping defined by the formula: 

(Set )( ) { ( ) : }f A f a a A   for each Set( )A X . 

The following takes place 

 

Lemma 1 [1]. If :f X Y  is a continuous mapping between topological spaces X  and Y

, then Set( ) :Set( ) Set( )f X Y  is a continuous mapping between Set( )X  and Set( )Y . 

In this case, for any continuous mapping :f X Y , the following diagram holds  

Set( )

              

                   

Set( ) Set( )

f

X Y

f

X Y

i i

X Y



 



                                                    (2) 

Let X  be a topological space. We denote by exp { : , , }X F F F F X F     the 

family of all nonempty closed subsets of it; 

exp ( ) { :c X F F   is compact; }F X  is the family of all compact subsets; 

exp ( ) { :con X F F   is connected, }F X  is the family of all connected subsets; 

exp ( ) { :ccon X F F   is connected and F   is compact F X } is the family of all 

connected compact subsets of X . 

Each of these families will be considered by the aforementioned Vystoris exponential 

topology. 

Note that for any space X  each of these topological spaces is a subspace of ( )Set X . We 

obtain the following chain of spaces: 
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exp ( ) exp ( ) exp( ) ( )ccon conX X X Set X                             (3) 

exp ( ) expc X X                                                     (4) 

 

Definition [2]. A non-empty space X  is called k connected (0 )k   (denoted by 

rX C ) if every continuous mapping : rf S X  with r k  is homotopic to a constant mapping 

0: { }rf S x  where 0x X . 

This definition is equivalent to the following: 

If any mapping : rf S X  can be extended to a continuous mapping 
1: rf D X  ,  

where 
1r rBdD S  , 

1rD 
 is closed, 

1rBdD    denotes the boundary 
1rD 
.  

Recall that a space X  is called locally k connected (denoted by 
nX LC ) if it is locally 

k connected for 0,1,...,k n , i.e. if, for any point 0y X  and any of its neighborhoods V , there 

exists another neighborhood 0V   of it contained in V  and such that any mapping 0: kf S V , 

where k n , is homotopic to a constant mapping : kf S V . 

It is easy to see that a (local) 0  connection is simply a (Local) path connection. For 1k  , 

our definition is equivalent to the standard definition of (local) simply connected. 

We also recall that X C  (respectively, X LC ) means the contractibility (respectively, 

local contractibility) of the space X . 

 

a. 
nC C C  , where 0,1,2,...n   

b. 
nLC LC LC  , where 0,1,2,...n   

c. 
n mC C  for n m . 

d. 
n mLC LC  for n m . 

 

Recall that a space X  is called linear-connected if for any two points 0 1,x x X  there is a 

path connecting them in X . A space X  is called contractible if the identity mapping :Xid X X  

is homotopic to the constant mapping 
0 0:xconst X x  that takes all X  to the point 0x X . 

Membership of 
kX C  is equivalent to the following:  
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For any simplex T  of dimension 1 , any continuous map has a continuous extension 

:F T X  such that any base set O  of the space X  containing ( )f A  also contains ( )F T , 

where A  is the union of an arbitrary set of faces of the simplex T  of dimension 1  , including all 

one-dimensional. 

Now we need an 2  Hilbert space, the points of this space are all possible sequences of 

{ : }kx x k N   real numbers satisfying the 





1

2

k

kx  condition; and the norm (metric) of an 

element 2x  is given by the formula 

1

2 2

1

( )k
k

x x




                                                                     (5) 

The following takes place 

 

Theorem [3]. The Hilbert space 2  considered as a topological space is homomorphic to a 

countable infinite power R
 of the real line.  

An n -dimensional Euclidean space 
nR  can be defined as the subspace of a Hilbert space 

consisting of those points { : }kx x k N   from 2  for which 0kx   for all k n . 

A system of points { }, 0,1,2,...,i i

kx x i m  , from 2  is called independent if their linear 

combination, 
0 0

0 1 ... m

mx x x     , where 0 1 ... 0m       is equal to zero, only when 

all 0i  . 

If the system of points , 0,1,...,ix i m  is independent, then the collection of points 2x  

representable in the form 
0 1

0 1 ... m

mx t x t x t x    , where 0it   and 0 1 ... 1mt t t     is 

called a (closed) m –dimensional simplex with vertices 
0 1 2, , ,... mx x x x  is denoted by 

0 1 2( , , ,... )mT x x x x  the coefficients 0 1 2, , ,... mt t t t  uniquely determined by the point x  and uniquely 

determining this point are called its barycentric, (in a barycentric coordinate system consisting of 

points 
0 1 2, , ,... mx x x x ). If a T  (closed) m -dimensional simplex with vertices 

0 1 2, , ,... mx x x x , 

then the set of all points x T , all barycentric coordinates of which in the system 
0 1 2, , ,... mx x x x  

are positive, is called an open m -dimensional simplex (with the same vertices as T ) and denoted by 

T  . The difference \T T bdT   is called the boundary of the simplex  T . By the face of the 
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simplex T  we mean the simplex T , all of whose vertices are the vertices of a given simplex T . A 

set (lying in a Hilbert space) represented as a finite (or locally finite) union of simplices is called a 

polyhedron. The union of all at most k dimensional simplices of the polyhedron P is called its            

k dimensional skeleton and is denoted by 
( )P k

. In particular, the zero-dimensional skeleton 
(0)P  

of the polyhedron P  coincides with the set of all its vertices [3-7]. 

 Definition [3]. A mapping :p X Y  is said to be locally soft if, for any separable 

metrizable space B , any of its closed subspaces A , and any two mappings : A X   and 

: B Y   such that |Ap p   there is a mapping :U X   defined on some open 

neighborhood U  of the set A  in B  such that / A   and /p u  , those. there is a diagram 

         

       

        

pX Y

A U B

 



 

 

           (6) 

    

  

       

pX Y

A B

 



 



                         (7) 

If, under the indicated conditions, the neighborhood U  can always be assumed to coincide 

with the entire space B , then the mapping P  will be called soft. 

Let us agree to say that a space (recall that we consider only separable metrizable spaces) is an 

absolute (neighborhood) extensor if the constant mapping of this space is a (locally) soft mapping. 

The class of all absolute (neighborhood) extensors is denoted by ( )A N E . 

The definition of the functor Set( )X  and the structure of its open sets, as well as the 

continuity of open mappings, imply the following [8-10]: 

Theorem [9]. Let :f X Y  be a continuous open mapping between topological spaces X  

and Y . Then the mapping Set( ) :Set( ) Set( )f X Y  is also open.  

We say that a category K  is given if a class of objects O  and a class of morphisms 

( , )Mor A B  elements, category K , are given, and 

 

1. For every pair of objects ( , )A B  from K , a set ( , )Mor A B  is given, called a morphism A  

into B ; 

2. For each triple of objects ( , , )A B C  from K , a mapping is given 
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: ( , ) ( , ) ( , )Mor A B Mor B C Mor A C    ( ( , )u v  image of a pair 

( , ) ( , ) ( , )u v Mor A B Mor B C    is denoted by v u  and is called the composition of the 

morphisms u  and v ; 

3. The sets ( , )Mor A B  and the composition of morphisms satisfy the following axioms: 

 

a. The composition is associative, i.e. for each triple of morphisms , ,u v  , the equality 

( ) ( )u v u v       holds; 

b. For each object A  from K  there is a morphism 1 :A A A , called the identity morphism of 

the object A , such 1A u u   and 1Av v   for any morphisms ( , )u Mor B A  and 

( , )v Mor A B ; 

c. all pairs ( , )A B  and ( , )A B   are different, then the intersection of the sets ( , )Mor A B  and 

( , )Mor A B   is empty. 

 

An important example of a category is the category TOP  of all topological spaces and their 

continuous mappings. The set ( , )Mor X Y  for any two topological spaces is in this case the simple 

set of all continuous mappings from X  to Y . Composition is understood as the usual composition of 

mappings. 

Quite similarly, a category is also formed by collections of different topological spaces with 

an appropriate choice of the properties characterizing them. For example, a category is the class of all 

compact spaces and their continuous mappings into themselves, etc. [11-16]. 

Example. Category YTOP . 

Another example of a category is the category YTOP . Objects of this category are continuous 

mappings into a given topological space Y . The morphism connecting for an object 1 1:f X Y  

and 2 2:f X Y  is a mapping 1 2:g X X  such that 2 1f g f . To be extremely precise, the 

morphism is a triangular commutative diagram 

1 2

1 2

   

         

g

f f

X X

Y



                                                      (8) 
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Identity mapping of object :f X Y  is identity mapping Xid . 

The product of a family of objects in a category YTOP  is defined as follows: Let a family of 

mappings :f X Y   , A  be given. In a topological product { : }AY Y A   , where 

Y Y  , for each A , consider the diagonal 

( ) {{ : } : , , }A AY y A Y y y A           .  

We denote by X  the complete preimage of the diagonal ( )AY  with respect to the mapping 

{ : }Y A  , and by Af  the restriction of this mapping to the set X . The natural 

homeomorphism of the diagonal ( )AY  onto the space Y  is denoted by A . We denote the 

composition A Af  by f . The space X  will be called the fan product of the spaces X  with respect 

to the mappings f . If Y  is one-point, then the fan product, as is easy to see, coincides with the 

usual one. The mappings f  are called the fibrewise product of the mappings f . It can be verified 

that the fibrous product f  of the mappings f  is the product of objects f  in the category YTOP . 

Let us also agree to denote by    the restrictions of the projections : { : : }X A X       on 

X  and call them projections of the fan product. It is easy to see that the equality f f   holds 

for any A . 

Each topological space can be identified with its mapping into some fixed one-point space 

and, therefore, the category TOP  is a subcategory of the category YTOP .  

Let ( , )  V MG  and ( , )  V  MG  be two categories. A mapping :  F G G  that 

transforms objects into objects and morphisms into morphisms is called a covariant (contravariant) functor 

from category G  to category G  if: 

1) for any morphism :f X Y  from the category G , the morphism ( )fF  acts from ( )XF  

to ( )YF  (from ( )XF  to ( )YF ); 

2) ( )( )X Xid id
F

F  for every X V ; 

3) ( ) ( ) ( )f g f gF F F   ( ( ) ( )g fF F ); 

Let  i
F :G G , 1,2i   be two covariant functors from a category ( , )  V MG  to a 

category ( , )  V  MG . A family of morphisms 1 2{ : ( ) ( ), }Xf X X x V V     F F  is 
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called a natural transformation of a functor 1F  into a functor 2F  if, for every morphism 

:f X Y  of a category G , the diagram 

1 2

1 2

1 1

( ) ( )

( )               ( )

( ) ( )   

X

Y

f

f

X X

f X

Y Y



 



      F F

F F

         F F

                                         (9) 

Let 1F , 2F  be functors acting from the category V  into itself. A functor 1F  is called a 

subfunctor (overfunctor) of the function 2F  if there exists a natural transformation 

1 2{ }:Xf F F  such that every mapping Xf  is an embedding (epimorphism). In the second 

case, the functor 2F  is called the functor-functors of the functor 1F . 

Note that the essential functor Id  and the functors exp , expc
, expccon

 are covariant 

subfunctors of the functor Set  on the category of Top -topological spaces and continuous mappings 

into itself. The definition of a covariant functor and the definition of morphisms Set( )f  on the 

category Top  of topological spaces and continuous mappings into itself imply the following. 

 

Theorem 1. a) The functor Set  is a covariant functor in the category Top ; 

b) The functor Set :Top Top  preserves the layers of a continuous mapping, that is, 

1 1(Set( )) ( ( )) Set( ( ))f f A f A  .  

Let X  be an infinite topological 1T  -space. We denote by 
0

Set ( )X  the family of all 

finite and countable subsets of the space X , that is, 

0
0Set ( ) { : ; }X F F X F    ; 

exp ( ) { : ; }n X F F X F n   ; 

1

exp ( ) exp ( )n
n

X X





 ; 

 from here 

0
exp ( ) Set ( )X X  , 

0
Set ( ) Set( )X X  . 
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For any map :f X Y , the fiberwise exponent 
1:

f
f X Y  where 

1{ Set( ) : ( ), }fX F X F f y y Y     is defined, so that ( )f F y  if 
1( )F f y .  

Consider the commutative diagram 

0

   

Z  Y 

g

k

n

Z X

f



 



                                                 (10) 

where 0Z  is a closed subset of the compact set. 

(*): The problem of the existence of an extension :k Z X  of a mapping g  such that 

f k h . 

The mapping f  is called n  soft, 0,1,2,...n   if problem (*) has a solution whenever 

dim n ;  soft mappings are simply called soft mappings. 

A subset A  (not necessarily closed) of a space X  is called C  embedded if every 

continuous function :f A R  (respectively, : [0,1]f A I  ) is continuous to all X . 

A space Y  is called contractible (for short, Y C ) if there exists a homotopy 

( , ) :H y t Y I Y   such that ( ,0) YH y id  and ( ,1)H y  are trivially locally contractible (for 

short, Y LC ) if any point y Y  and any of its neighborhoods U  has a smallest neighborhood 

V U such that the written embedding is homotopy trivially. 

Theorem 2. The functor Set  preserves the contractibility of topological spaces. 

Proof. Let  be a contractible space and  a homotopy connecting 

the mappings 0( ,1) XH x id h   and 
0 1( ,1) 1xH x h  . An embedding  for 

each  defines an embedding . But the space 

 is naturally homeomorphic to the space . Therefore, a natural 

embedding  is defined. Then the restriction  of 

the mapping  is a continuous homotopy connecting the mappings  and 

, that is, it is the desired homotopy. Hence the space  is contractible. Theorem 2 is 

proved. 

If X  is nested in Y , then Set( )X  is also nested in Set( )Y . 

X ( , ) : [0,1]H x t X X 

: { }ti X t X I  

[0,1]t ( ) : ( { }) ( [0,1])tSet i Set X t Set X  

( { })Set X t ( { })Set X t

( ) ( [0,1])Set X I Set X  
( )( ( , )) |Set X ISet H x t 

( ( , ))Set H x t 0( )Set h

1( )Set h ( )Set X
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A set A  of a space X  is called a retract X  if there exists a continuous mapping :r X A  

such that ( )r a a  is true for any a A , that is, there exists a continuous map of the space X  onto 

the subspace A  leaving the points of the set A  fixed. 

Proposition [5]. A subspace A  is a retract of the space X  if and only if, for any space Y , 

each map :g A Y  admits an extension to the space X . 

If a set A  is everywhere dense in X , then Set( )A  is also everywhere dense in ( )Set X . 

Question: if X  is a iT  space, then Set( )X  is also a iT  space? 

Let X  be a topological 1T  space 

Set( ) ( ) Set( )XX i X X  , ( )Xi X  C  nested, in Set( )X , i.e. : ( )Xf i X R  is 

continuous,  :Set( )f X R   that 
( )|

Xi Xf f . 

1 2
1

( , ,..., ) { : Set( ), , , 1, }
k

k i i
i

O u u u A A X A u A u i k


      are the basic sets of 

the space Set( )X . Now we consider the complement of the basic set in the space Set( )X , that is, 

which sets are closed sets in Set( )X . 

On the other hand: 

1 2
1 1

( , ,..., ) { : Set( ), } ( { : Set( ), })
k k

k i i
i i

O u u u A A X A u A A X A u
 

         (11) 

1 2
1

Set( ) \ ( , ,..., ) (Set \{ : Set( ); })
k

k i
i

X O u u u X A A X A u


    

1 1

(Set \ { : Set , }) Set \{ : Set , }
k k

i i
i i

X A A X A u X A A X A u
 

          (12) 

1

( Set( ) \{ : Set , })
k

i
i

X A A X A u


  . 

Hence, this set consists of the union of the following sets: 

a. 
1

Set \{ : Set : }
k

i
i

X A A X A u


  ;  (13) 

b. Set \{ : Set : }iX A A X A u  ; 

Now, if we expand, we get 
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1 1 1

Set \{ : Set , } { : Set , \ ( \ )}
k k k

i i i
i i i

X A A X A u A A X A X u X u
  

            (14) 

Set \{ : Set , } { : Set , }i iX A A X A u A A X A u      { : Set , \ }iA A X A X u    

It turns out that if 1 2, ,..., ku u u  are open, then the sets 

1 1

{ : Set , } Set( , )
k k

i i
i i

A A X A u u X
 

   ,                                (15) 

{ : Set , } Set \ Set( \ , )iA A X A u X X u X    

are open in the space of nonempty subsets by the definition of the exponential set Set( )X . 

On the other hand, the elements of the prebase that we specified when defining the 

exponential topology have this form: 

Set( , ) ( )u X O u , Set( ) \ Set( \ , ) ( , )X X u X O u X . 

Thus, the families of all sets of the form 1 2, ,..., kO u u u  , where the sets 1 2, ,..., ku u u  are 

open in the space X , are the base of the exponential topology in the space Set( )X . 

Condition [1].  
#LC : There is a base of neighborhoods satisfying Condition 

#C .  

Theorem [1]. If a topological space Z  has the property 
#LC , then for any of its open 

coverings   there is an open cover   of it such that for every polytope CP  by the Whitehead 

topology every   -realization of Z: Af   (where an A subpolytop containing all edges from 

P) has extensions :ext P , which is a   implementation. 

Condition.  
#C : For any simplex T  of dimension 1 , any continuous mapping has a 

continuous extension :F T Z  such that any base set O  of the space Z  containing ( )f A  

contains ( )F T .  

Condition equivalent to 
#C : Any continuous mapping : , 1nf S Z n  , has a continuous 

extension 
1: nF Q Z   to the ball bounded by the sphere 

nS  such that if ( )nf S O , then 

1( )nf Q O

  .  

For a topological space X , here  denotes one of the following spaces: SetX , Comp , 

ConnX , ContX  for arbitrary X , and exp X , exp X CompX , exp X ConnX , 

exp X ContX  (for regular X ) where exp X  is the family of all non-empty closed subsets, 



 

 

ISSN: 2237-0722  

Vol. 11 No. 2 (2021) 

Received: 10.03.2021 – Accepted: 12.04.2021 

1151 

 

SetX  is the family of all non-empty subsets, CompX -family of all non-empty compact subsets, 

ConnX -family of all non-empty connected subsets, ContX -family of all non-empty connected 

compact subsets of X [17].  

Proposition. The functor Set  preserves retractions. 

Proof. Let X  be a topological space A X  and :r X A a continuous retraction. Then 

The mapping ( ) : ( ) ( )Set r Set X Set A  is also continuous [1]. It is known that 

( ) ( )Set A Set X  and the retraction :r X A  leave the points of the subspace A  movable. 

Consequently, under the mapping ( )Set r , the points of the space ( )Set A  remain fixed, since the 

functor Set  preserves points and empty sets. Hence, ( )Set r  is a retraction, i.e. ( )Set A  is a retract 

of ( )Set X . The proposition is proved. 
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