Otto motor dynamics

Florian Ion Tiberiu Petrescu, Relly Victoria Virgil Petrescu

Resumo


Otto engine dynamics are similar in almost all common internal combustion engines. We can speak so about dynamics of engines: Lenoir, Otto, and Diesel. The dynamic presented model is simple and original. The first thing necessary in the calculation of Otto engine dynamics, is to determine the inertial mass reduced at the piston. It uses then the Lagrange equation. The dynamic equation of motion of the piston, obtained by integrating the Lagrange equation, takes a new form. It presents a new relation which determines the elastic constant of the crank shaft, k. The moment of inertia J1 can be determined with an original relation, as well.

Texto completo:

PDF

Referências


Dawson, J., An experimental and Computational Study of Internal Combustion Engine Modeling for Controls Oriented Research, Ph.D. Dissertation, The Ohio State University, 2005.

Dieter, G.: Engineering Design. Boston. McGraw Hill, 2000.

Eneşca, Al.: Noi materiale nanostructurate pentru tehnologia hidrogenului (New Nanostructured Materials for Hydrogen Technology). In: Ph.D. Thesis, Transilvania University of Braşov, Braşov, Romania, 2007.

Ferguson, C., Internal Combustion Engines: Applied Thermosciences, John Wiley & Sons, Inc., New York, 2001.

Gunston, Bill, (1999). Development of Piston Aero Engines (2 ed.). Sparkford, UK: Patrick Stephens Ltd. p. 21. ISBN 0-7509-4478-1.

Gupta, H., N. Fundamentals of Internal Combustion. New Delhi: Prentice-Hall, 2006.

Guzzella, L., Introduction to Modeling and Control of Internal Combustion Engine Systems, Springer, New York, 2004.

Heywood, J., “Internal Combustion Engine Fundamentals”, McGraw-Hill, New York, 1988.

Lee, B., Methodology for the Static and Dynamic Model Based Engine Calibration and Optimization, Ph.D. Dissertation, The Ohio State University, 2005.

Liu, T.H.: A Maximum Torque Control with a Controlled Capacitor for a Single-Phase Induction Motor. In: IEEE Trans. on Industrial Electronics 42 (1995) No. 1, p. 17-24.

Petrescu, R.V., Petrescu, F.I., Determining the mechanical efficiency of Otto engine’s mechanism, Proceedings of International Symposium on Theory of Machines and Mechanisms, SYROM 2005, Vol. I, p. 141-146, Bucharest.

Petrescu, R.V., Petrescu, F.I., Otto Engine Design, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, CNCSIS 118 B, ISSN 1221-5872, Vol. Ib, p. 537-540, Cluj-Napoca, 2009.

Petrescu, F.I., Petrescu, R.V., V Engine Design, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, CNCSIS 118 B, ISSN 1221-5872, Vol. Ib, p. 533-536, Cluj-Napoca, 2009.

Piltan, F., Piran, M., Akbari, M., Barzegar, M., Baseline Tuning Methodology Supervisory Sliding Mode Methodology: Applied to IC Engine, International Journal of Advances in Applied Sciences, Vol.1, No.3, September 2012, p. 116-124, ISSN: 2252-8814.

Zhu, G., et al, Closed-Loop Ignition Timing Control for SI Engines Using Ionization Current Feedback, IEEE Trans on Control Systems, p. 416-427, May 2007.




DOI: https://doi.org/10.7198/geintec.v6i3.373

Apontamentos

  • Não há apontamentos.


Direitos autorais



__________________________________

ISSN: 2237-0722

A REVISTA GEINTEC possui D.O.I e está cadastrada nos sistemas:

Os trabalhos da Revista GEINTEC - Gestão, Inovação e Tecnologias de www.revistageintec.net está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional.

Licença Creative Commons

Associação Acadêmica de Propriedade Intelectual - Aracaju/SE. Universidade Federal de Sergipe. Cidade Universitária Prof. "José Aloísio de Campos" 

Av. Marechal Rondon, s/n Jardim Rosa Elze - Pólo de Pós-Graduação - Sala 8 - CEP 49100-000 - São Cristóvão/SE. [email protected]